

GOAL V2.20

Generic Open Abstraction Layer

Programmer´s Manual

port GmbH

Regensburger Str. 7

D-06132 Halle/Saale

Version: 0.1 2/169

Disclaimer

This manual represents the current state of the product. Please check with port.de for the latest version as the
document may have a newer version since errors may be corrected or changes for a newer version of the product
may be incorporated. Port.de assumes no responsibility for errors in this document. Qualified feedback is
appreciated at service@port.de.

This document is the Intellectual Property of port.de and is intended to be used with the described product only.
It may be forwarded and/or copied in the original and unmodified format. All rights reserved.

The product enables to use technologies such as PROFINET, EtherNet/IP and/or EtherCAT and others. These
technologies are promoted by trade organizations, such as PNO (profibus.org), ODVA (odva.org) or ETG
(ethercat.org). These trade organizations as well maintain the specification and care about legal issues.
We strongly recommend to become a member of these organisations. Most technologies are making use of
patented or otherwise copyrighted technologies, approaches or other intellectual property. The membership
usually automatically entitles the member for use of most of the technology-inherent copyrighted or otherwise
protected Intellectual Property of the corresponding trade organization and most 3rd parties. Otherwise the user
will need to obtain licenses for many patented technologies separately.

Further we suggest to you to subscribe to the corresponding Conformance Test Tool of these trade organizations.
For instance the ODVA only accepts conformance test applications from companies who have a valid membership
and have a valid subscription to the recent Conformance Test Tool. We as port are members in all corresponding
organizations and are holding a subscription to these tools - however you as a customer need to have an own
membership and an own subscription to the tool.

All rights reserved

The programs, boards and documentations supplied by port GmbH are created with due diligence, checked
carefully and tested on several applications.
Nevertheless, port GmbH cannot guarantee and nor assume liability that the program, the hardware board or the
documentation are error -free or appropriate to serve a specific customer purpose. In particular performance
characteristics and technical data given in this document may not be interpreted to be guaranteed product
features in any legal sense.

For consequential damages, every legal responsibility or liability is excluded.
port has the right to modify the products described or their documentation at any time without prior warning, as
long as these changes are made for reasons of reliability or technical improvement.
All rights of this documentation are with port. Unless expressively granted - the transfer of rights to third parties
or duplication of this document in any form, whole or in part, is subject to written approval by port. Copies of this
document may however be made exclusively for the use of the user and his engineers. The user is thereby
responsible that third parties do not obtain access to these copies.
The soft- and hardware designations used are mostly registered and are subject to copyright.

Copyright
© 2019 port GmbH
Regensburger Straße 7
D-06132 Halle
Tel. +49 345 - 777 55 0
Fax. +49 345 - 777 55 20
E-Mail service@port.de
www.port.de
www.port-automation.com

mailto:service@port.de
http://www.port.de/
http://www.port-automation.com/

Version: 0.1 3/169

Contents

1 Introduction ... 12

1.1 About GOAL .. 12

1.2 How to read this document .. 13

2 Installation .. 14

2.1 Applications (appl) .. 15

2.2 Platform (plat) ... 15

2.3 Projects (projects) ... 16

3 GOAL model ... 18

3.1 GOAL core ... 19

3.2 GOAL media adapter... 20

3.3 GOAL media interface ... 20

3.4 GOAL extension modules .. 20

3.5 GOAL architectures ... 20

3.6 GOAL boards ... 20

3.7 GOAL drivers ... 20

4 GOAL state machine ... 21

4.1 GOAL IDs ... 22

4.2 GOAL initialization .. 23

4.2.1 Staging .. 23

4.2.2 Platform API ... 25

4.2.3 Registration of media interfaces, media adapters and drivers 25

4.2.4 Application-specific indication function for initialization .. 26

4.2.5 Install loop-controlled processes ... 27

4.2.5.1 Implementation of appl_loop() ... 27

4.2.5.2 Function list ... 28

4.2.6 Application-specific indication function for configuration .. 29

4.2.7 Integration of user functions in staging system ... 29

4.3 GOAL operation .. 30

4.4 GOAL finish ... 30

4.4.1 Halt ... 30

4.4.2 Reset ... 30

Version: 0.1 4/169

5 GOAL core modules (goal) ... 31

5.1 Heap Memory Allocator (goal_alloc) .. 31

5.1.1 Configuration.. 32

5.1.2 Implementation guidelines .. 32

5.1.2.1 Allocate a memory range .. 32

5.2 Bitmap handling (goal_bm) .. 33

5.2.1 Implementation guidelines .. 34

5.2.1.1 Create a bit-field with a lock ... 34

5.2.1.2 Take a bit from the bit-field .. 34

5.2.1.3 Return a bit to the bit-field.. 34

5.3 Configuration Manager (goal_cm) .. 34

5.3.1 Configuration.. 36

5.3.1.1 Compiler-defines ... 36

5.3.1.2 CM-variables .. 36

5.3.2 Callback functions .. 36

5.3.2.1 CM-variables based ... 37

5.3.2.2 CM-module based ... 38

5.3.3 Creating a CM-module and a variable list .. 39

5.3.4 Virtual Variables ... 40

5.3.5 Command line interface ... 41

5.3.6 Implementation guidelines .. 41

5.3.6.1 Creating a new CM-module ... 41

5.3.6.2 Add a new CM-variable to a CM-module .. 42

5.3.6.3 Load and save CM-variables nonvolatile ... 43

5.4 Generic Ethernet Frame Handler (goal_eth) .. 44

5.4.1 Configuration.. 46

5.4.1.1 Compiler-defines ... 46

5.4.1.2 CM-variables .. 47

5.4.2 Callback functions .. 48

5.4.3 Platform API ... 49

5.4.4 Ethernet interface .. 50

5.4.5 VLAN ... 54

5.4.6 MAC table ... 54

5.4.7 Port settings ... 55

5.4.8 QoS settings ... 55

5.4.9 Implementation guidelines .. 55

5.4.9.1 Configure speed rate by special command ... 55

5.4.9.2 Restart the autonegotiation with goal_ethCmd() ... 56

Version: 0.1 5/169

5.4.9.3 Send and receive ethernet frames .. 56

5.5 Command line interface ... 56

5.5.1 Naming and parameter conventions ... 56

5.5.2 Actions .. 57

5.5.3 Command parameter conventions .. 57

5.5.3.1 Integer values .. 57

5.5.3.2 Strings .. 57

5.5.3.3 Ports... 57

5.5.3.4 MAC addresses .. 58

5.5.3.5 IP addresses ... 58

5.5.4 Ethernet Interface .. 58

5.5.5 VLAN ... 58

5.5.6 MAC table ... 60

5.5.7 Denial of Service Prevention .. 62

5.5.8 Port settings ... 63

5.5.9 QoS Settings ... 65

5.5.10 Config Manager .. 66

5.5.11 Network Interface .. 67

5.5.12 IP Settings ... 67

5.6 Statistics .. 67

5.6.1 Access ... 71

5.6.2 Ethernet statistics ... 71

5.7 Generic GOAL instances .. 71

5.8 Locking .. 72

5.8.1 Platform API ... 72

5.8.2 Implementation guidelines .. 74

5.8.2.1 Use a lock ... 74

5.9 Logging .. 74

5.9.1 Configuration.. 75

5.9.2 Platform API ... 76

5.10 Message Logger ... 76

5.10.1 Configuration.. 78

5.10.1.1 Compiler-defines ... 78

5.10.1.2 CM-variables .. 78

5.10.2 Implementation guidelines .. 79

5.10.2.1 Write a log message without parameters to the ring buffer .. 79

Version: 0.1 6/169

5.10.2.2 Write a log message with parameters to the ring buffer.. 80

5.11 Network handling .. 80

5.11.1 Configuration.. 82

5.11.1.1 Compiler-defines ... 82

5.11.1.2 CM-variables .. 83

5.11.2 Callback functions .. 85

5.11.3 IP statistics .. 86

5.11.4 Platform API ... 92

5.11.5 Command line interface ... 96

5.11.6 Implementation guidelines .. 96

5.11.6.1 Configure, open and activate a net channel ... 96

5.11.6.2 Send data ... 97

5.12 Queue buffer pool ... 98

5.12.1 Callback functions .. 101

5.12.2 Buffer header ... 102

5.12.3 Buffer flags ... 102

5.12.4 Internal queue usage ... 103

5.12.5 Implementation guidelines .. 104

5.12.5.1 Get an uninitialized buffer from the queue and add the buffer to the queue 104

5.12.5.2 Get an initialized buffer from the queue and release the buffer without a callback function 105

5.12.5.3 Get an initialized buffer from the queue and release the buffer with a callback function 106

5.13 Ring buffer ... 106

5.14 Task abstraction layer .. 107

5.14.1 Configuration.. 107

5.14.2 Platform API ... 108

5.15 Timer.. 109

5.15.1 Callback functions .. 111

5.15.2 Platform API ... 111

5.15.3 Command line interface ... 112

5.15.4 Implementation guidelines .. 113

5.15.4.1 Use a periodic soft timer and start the timer immediately .. 113

5.15.4.2 Use a single soft timer and start the timer in the application .. 113

5.15.4.3 Stop hard timer with callback function ... 114

5.16 Tracing ... 114

5.16.1 Tracing via ITM ... 116

5.16.2 Tracing via pin... 116

5.16.3 Configuration.. 116

Version: 0.1 7/169

5.17 Utility functions ... 116

6 GOAL media (goal_media) ... 118

6.1 Nonvolatile storage ... 118

6.1.1 NVS media interface ... 118

6.1.1.1 Implementation guidelines ... 119

6.1.1.1.1 Registration of a memory region .. 119

6.1.1.1.2 Write data to nonvolatile memory ... 120

6.1.1.1.3 Read data from nonvolatile memory .. 120

6.1.2 NVS media adapter .. 121

6.1.2.1 Implementation guidelines ... 121

6.1.2.1.1 Write data to nonvolatile memory ... 121

6.1.2.1.2 Read data from nonvolatile memory .. 121

6.2 LED .. 122

6.2.1 Implementation guidelines .. 122

6.2.1.1 Switch on/off and get the state of a single LED .. 122

6.2.1.2 Switch on/off and get the state of a LED group .. 123

6.3 SPI ... 123

6.3.1 Callback functions .. 125

6.3.2 Implementation guidelines .. 126

6.3.2.1 Read and write data via the SPI-bus.. 126

6.3.2.2 Configure the SPI interface.. 126

6.3.2.3 Handle SPI events .. 127

6.4 TLS ... 127

6.4.1 Configuration.. 128

6.4.2 mbed TLS library... 128

6.4.3 Implementation guidelines .. 129

6.4.3.1 Initialize TLS ... 129

6.4.3.2 Use a TLS channel .. 131

6.5 CMFS ... 131

6.5.1 Integration of CMFS ... 131

7 GOAL extension modules (protos) ... 133

7.1 Device Detection (DD) .. 133

7.1.1 Configuration.. 134

7.1.1.1 Compiler-defines ... 134

7.1.1.2 CM-variables .. 134

7.1.2 Implementation guide .. 134

7.1.2.1 Configure the local device ... 134

7.2 Command line interface (CLI) ... 135

Version: 0.1 8/169

7.2.1 Configuration.. 135

7.2.2 Platform API ... 136

7.2.2.1 UART connection ... 136

7.2.3 Command structure ... 136

7.2.3.1 Main-command ... 137

7.2.3.2 Sub-command ... 137

7.2.3.3 Action... 137

7.2.3.4 Parameters .. 137

7.2.3.4.1 Integer values .. 137

7.2.3.4.2 Strings .. 137

7.2.3.4.3 Port numbers .. 137

7.2.3.4.4 MAC addresses .. 138

7.2.3.4.5 IP addresses .. 138

7.2.4 Creating application-specific commands ... 138

7.2.5 Command line interface for debugging ... 138

7.2.6 Implementation guidelines .. 139

7.2.6.1 Create application-specific commands ... 139

7.3 Web-server ... 141

7.3.1 Configuration.. 142

7.3.1.1 Compiler-defines ... 142

7.3.1.2 CM-variables .. 142

7.3.2 Web-templates ... 146

7.3.2.1 CM-variables .. 146

7.3.2.2 Application-specific variables .. 146

7.3.2.3 Lists .. 147

7.3.3 Characters .. 148

7.3.4 Callback functions .. 148

7.3.5 Implementation guideline .. 149

7.3.5.1 Upload a web-page.. 149

7.3.5.2 Read a CM-variable ... 150

7.3.5.3 Read application-specific variable ... 151

7.3.5.4 Read a list .. 153

7.3.5.5 Set a user level... 155

7.3.5.6 Download files ... 156

7.4 Firewall .. 157

7.4.1 ARP-Firewall ... 157

7.4.2 IPv4-Firewall ... 158

8 Implementation specifics ... 159

8.1 Naming rules ... 159

8.2 GOAL data types ... 159

Version: 0.1 9/169

8.3 GOAL status... 160

8.4 Alignment.. 160

8.5 Heap memory size .. 160

9 Additional platform-specific indication functions .. 162

10 Version information ... 163

11 Glossary .. 164

12 References .. 165

13 Index ... 166

Version: 0.1 10/169

Table of figures

Figure 1: components of a GOAL system ... 12

Figure 2: GOAL directory structure .. 14

Figure 3: structure of the directory appl .. 15

Figure 4: structure of the directory plat... 16

Figure 5: structure of the directory projects .. 17

Figure 6: GOAL model .. 19

Figure 7: GOAL state machine .. 21

Figure 8: function order at staging ... 24

Figure 9: bitmap handling .. 33

Figure 10: data structure and data flow of the Configuration Manager.. 35

Figure 11: ethernet frame handler as part of the GOAL system .. 44

Figure 12: RX ethernet frame handling .. 45

Figure 13 integration of the message logger ... 76

Figure 14: data structure of a log message .. 77

Figure 15: topology for net channels ... 80

Figure 16: determination of the local address of net channels ... 81

Figure 17: queue buffer handling ... 99

Figure 18: typical case for hard timer with operating system ... 110

Figure 19: typical case for hard timer without operating system .. 110

Figure 20: soft timer handling .. 110

Figure 21: media adapter for SPI.. 118

Figure 22: integration of TLS .. 128

Figure 23: web-page of example 06_template_list ... 148

Version: 0.1 11/169

Changelog

Version Changes

1.0

Initial release

Version: 0.1 12/169

1 Introduction

1.1 About GOAL

GOAL is a sophisticated middleware to integrate real time communication in applications for
industrial networking. GOAL connects extension modules, various operating systems and GOAL
core modules with applications on different hardware platforms. The modular structure simplifies
the development of embedded systems and makes the exchange of single GOAL components
possible, for example the communication profile can be changed by the substitution of the
extension modules with the suitable communication library.

Figure 1: components of a GOAL system

The GOAL concept differentiates between hardware-dependent and hardware-independent
sections in order to make the exchange of platforms possible without the rearrangement of the
complete embedded system.

This manual describes the GOAL components, the GOAL structure and the usage of GOAL.
Platform-specific information are documented in the GOAL Platform Manual for the specific
hardware.

GOAL

application operating system

GOAL core

modules

platform

GOAL extension

modules

Version: 0.1 13/169

1.2 How to read this document

Within the document, special recommendations are given marked by two signs:

Special information giving hints to avoid common pitfalls when using the software

Special information to prevent malfunction of the software or that require special
attention of the user.

Version: 0.1 14/169

2 Installation

The GOAL middleware is delivered as source code with the following directory structure:

Figure 2: GOAL directory structure

All descriptions in the manuals refer to this directory structure.

appl

bsp

ext

goal

plat

projects

protos

tools

goal

goal_media

hardware-independent application

board support packages

external software components of third parties

GOAL core components

media layer between hardware-dependent and

hardware-independent components

projects as connectors of the GOAL components

GOAL extension modules such as protocol stacks

and libraries

GOAL development tools

hardware-dependent components

Version: 0.1 15/169

2.1 Applications (appl)

The directory appl can contain various applications, see Figure 3. The user can add own
application-specific files to each application.

Figure 3: structure of the directory appl

The code of the applications shall be hardware-independent in order to exchange the platform
without changes on the application. Application-specific functions depending on the hardware
shall be connected to the hardware platform via media interfaces and media adapters.
Application-specific functions can use the GOAL core modules. Public declarations and definitions
of all GOAL
core modules are available by including the header file goal_includes.h.

¢ƘŜ ŀǇǇƭƛŎŀǘƛƻƴ Χ\goal\appl\00410\ template belongs to the scope of the standard delivery and
provides a template for own applications.

2.2 Platform (plat)

The directory plat represents the hardware platform and is divided in parts for architecture, boards
and drivers according to the following structure:

goal appl application group application 1

application n

application x

Version: 0.1 16/169

Figure 4: structure of the directory plat

Details to special platforms are documented in the GOAL Platform Manual for the specific
platform.

2.3 Projects (projects)

The directory projects are designed to take in the compiler projects, which connect all necessary
GOAL components including the application. The recommended structure of the directory projects
is shown in Figure 5.

goal plat arch

board

drv

architecture 1

architecture n

manufacturer 1

manufacturer n

board 1

board n

board 1

board n

hardware type 1

hardware type n

manufacturer 1

manufacturer n

hardware sub-type 1 manufacturer 1

driver 1

driver 2

driver 1

driver 1

hardware sub-type 2

manufacturer 2 driver 1

manufacturer 1 driver 1

Version: 0.1 17/169

Figure 5: structure of the directory projects

goal projects project group project 1

project n

project x

Version: 0.1 18/169

3 GOAL model

GOAL is designed for the usage on

¶ single-core or multi-core systems

¶ systems with an operating system in single- or multithreaded design

¶ embedded systems without an operating system

Figure 6 shows the relationship between the GOAL components.

Version: 0.1 19/169

Figure 6: GOAL model

The colored arrows demonstrate different possibilities to apply GOAL components.

GOAL defines several types of components with a specific functionality:

3.1 GOAL core

The GOAL core modules provide basic middleware functionality as memory handling, timers, tasks,

application

GOAL extension modules

GOAL core modules

GOAL media

GOAL platform

bus

network

bus

media interface

media adapter

architecture board

bus

driver

bus

hardware-dependent GOAL component

hardware-independent GOAL component

application uses MA directly

submodule uses MA directly

submodule uses MI

application uses MI

availability of GOAL modules

Legend

Version: 0.1 20/169

list etc. Those modules can be used from all GOAL components and from the application.

3.2 GOAL media adapter

Media adapter define an interface for drivers. Drivers in GOAL create a media adapter during
registration. Upper layers use drivers through this unified interface, thus drivers and platforms are
replaceable. Media adapters do not implement any additional logic, only provide a generic
interface.

3.3 GOAL media interface

Media interfaces implement functionality based on media adapters or other media interfaces. This
functionality may be a filesystem, an RPC implementation or even a communication stack. Media
interfaces can be used by applications or other GOAL components.

3.4 GOAL extension modules

GOAL extension modules are additional software components, that implement application
functions based on goal. These are for example:

- /ƻƳƳǳƴƛŎŀǘƛƻƴ ǎǘŀŎƪǎ ό¢/tκLtΣ twhCLb9¢Σ 9ǘƘŜǊbŜǘκLtΣ 9ǘƘŜǊ/!¢Σ Χύ
- GOAL firewall
- GOAL log emitter
- GOAL Device Detection
- GOAL Web Server

3.5 GOAL architectures

These modules implent the architecture adaption layer between GOAL and the actual targets.
There the platform specific parts of GOAL core module functionality are implemented.

3.6 GOAL boards

A board represents an actual hardware implementation of a CPU with additional peripherals and
connectors, e.g. a development board. The code within this board file initializes peripherals and
registers used drivers.

3.7 GOAL drivers

Drivers implement hardware access and provide the functionality through a media adapter to
other layers of the stack.

Version: 0.1 21/169

4 GOAL state machine

The GOAL system provides a state machine for system and application startup and shutdown,
simplified shown in Figure 7. The state machine is managed by the GOAL core module main.

Figure 7: GOAL state machine

GOAL state GOAL sub-state Action(s)

GOAL_FSA_INIT GOAL_FSA_INIT_APPL application-specific initialization before
GOAL components are initialized

GOAL_FSA_INIT_GOAL initialization of GOAL components

start

GOAL_FSA_INIT

GOAL_FSA_INIT_APPL

GOAL_FSA_INIT_GOAL_INIT

GOAL_FSA_INIT_APPL_SETUP

GOAL_FSA_OPERATION

end

GOAL_FSA_FINISH

1

3

6

5

4

2

8

7

Version: 0.1 22/169

GOAL state GOAL sub-state Action(s)

including the initialization of the GOAL
platform

GOAL_FSA_INIT_APPL_SETUP application-specific initializations
depending on GOAL core modules and
configuration of the GOAL system

GOAL_FSA_OPERATION -- normal operation including the execution
of loop-controlled functions

GOAL_FSA_FINISH -- halt or reset the GOAL system
Table 1: GOAL states

GOAL
state

transition

Event(s)

1 automatic transition after power-on or reset

2 automatic transition if application was initialized successful
3 automatic transition if all GOAL components and the application was initialized

successful

4 an error occurred during initialization
5 automatic transition if GOAL system was configured

6 a severe error was occurred during normal operation
7 GOAL system is halted

8 GOAL system is reset and re-starts again
Table 2: GOAL state transitions (see Figure 7)

4.1 GOAL IDs

GOAL implements a concept of creating and identifying instances of objects by IDs. One could
create two instances of a SPI driver, each operating on a different channel. Those two instances
would then be identified by different IDs.

If only one instance of an object of specific type is created, the default ID of GOAL_ID_DEFAULT can
be used. This ID can be reused for different types (e.g. for a driver and for a Media Interface), since
they are directly realted to the object type.

Beside that each software component uses different IDs for identification or logging. Those IDs are
defined in goal/goal_id.h. Here is an excerpt:

#define GOAL_ID_DEFAULT (0) /**< GOAL : Default ID */

#define GOAL_ID_BM (1) /**< GOAL : Bitmap Handling */

#define GOAL_ID_CM (2) /**< GOAL : Config Manager */

#define GOAL_ID_CTC (3) /**< GOAL : CTC */

#define GOAL_ID_ETH (4) /**< GOAL : Ethernet */

#define GOAL_ID_LIST (5) /**< GOAL : List Management */

#define GOAL_ID_LOCK (6) /**< GOAL : Lock Management */

#define GOAL_ID_LOG (7) /**< GOAL : Logging */

#define GOAL_ID_MAIN (8) /**< GOAL : Main */

Version: 0.1 23/169

#define GOAL_ID_MEM (9) /**< GOAL : Memory Management */

#define GOAL_ID_MI (10) /**< GOAL : Media Interface */

#define GOAL_ID_MA (11) /**< GOAL : Media Adapter */

#define GOAL_ID_NET (12) /**< GOAL : TCP/IP Networking */

#define GOAL_ID_REG (13) /**< GOAL : Register Handling */

#define GOAL_ID_RPC (14) /**< GOAL : RPC (CTC) */

#define GOAL_ID_TGT (15) /**< GOAL : Target */

#define GOAL_ID_DRV (16) /**< GOAL : Driver */

#define GOAL_ID_TASK (17) /**< GOAL : Task Management */

#define GOAL_ID_TMR (18) /**< GOAL : Timer Management */

Code 1 goal ID list excerpt

4.2 GOAL initialization

All GOAL components are initialized in state GOAL_FSA_INIT. The initialization covers:

¶ application-specific initializations in state GOAL_FSA_INIT_APPL,

¶ the embedding of initialization functions in the GOAL initialization process by staging,

¶ the initialization of each GOAL component,

¶ the combination of GOAL components by registration in state GOAL_FSA_INIT_GOAL,

¶ the installation of loop-controlled processes and

¶ application-specific configurations in state GOAL_FSA_INIT_APPL_SETUP.

All necessary services must be created and initialized in the state GOAL_FSA_INIT, because it is only
allowed to allocate memory in this state.

4.2.1 Staging

The GOAL system organizes the initialization process in stages. GOAL uses fixed stages. Each GOAL
core module has own stages. Some further stages complete the range of stages. Normally there
are two stages for each module:

¶ GOAL_STAGE_*_PRE: The initialization function shall be executed. This stage represents the
start of initialization of the considered component.

¶ GOAL_STAGE_*: The initialization function is finished. This stage represents the end of
initialization of the considered component.

Each GOAL component, also the application, can enter callback functions on every stage. The order
of the stages determines the order of execution of the callback functions. It is possible to add more
than one callback function to a stage. The order of execution of the callback functions within a
single stage is determined by the order of registration. The callback functions are listed in the stage
table, see Figure 8.

Each stage is identified by a stage-ID, defined in the enum GOAL_STAGES_T in
<GOAL>/goal/goal_main.h. The callback functions with the smallest stage-ID are executed first.
Platform-specific initializations assigned to the smallest stage-IDs, followed by GOAL core modules
and GOAL extension modules. Table 3 lists some stages, which are most interesting from the

Version: 0.1 24/169

application point of view.

Stage Description

GOAL_STAGE_TARGET_PRE for the initialization of the platform

GOAL_STAGE_TARGET indicate, that the initialization of the platform is ready
GOAL_STAGE_BOARD_PRE for additional initialization of the board

GOAL_STAGE_BOARD indicate, that the initialization of the board is ready
GOAL_STAGE_MODULES_PRE for the initialization of GOAL extension modules or the application

GOAL_STAGE_MODULES indicate, that the initialization of GOAL extension modules or the
application is ready

GOAL_STAGE_GOAL_PRE for the last initialization steps in state GOAL_FSA_INIT_GOAL

GOAL_STAGE_GOAL indicate, that the initialization of all GOAL components is ready
Table 3: some stages useful for applications

Each entry in the stage table contains a stage-ID, the direction type and a callback function. There
are two direction types:

¶ GOAL_STAGE_INIT: These stage table entries are processed in state GOAL_FSA_INIT_GOAL.

¶ GOAL_STAGE_SHUTDOWN: This direction type is reserved for future use.

Figure 8: function order at staging

At the beginning of state GOAL_FSA_INIT_GOAL the GOAL core modules and GOAL extension

stage-IDs: enum GOAL_STAGES_T

GOAL_STAGE_TARGET_PRE_ID 1

GOAL_STAGE_GOAL n

stage table

GOAL_STAGE_TARGET_PRE / GOAL_STAGE_INIT / fct_targetInitPart1()

GOAL_STAGE_GOAL / GOAL_STAGE_INIT / fct_targetGoalReady()

GOAL_STAGE_TARGET_PRE / GOAL_STAGE_INIT / fct_targetInitPart2()

...

...

...

order of functions during

GOAL_initialization

stage-ID / direction type / callback function

1.2

1.1

n.1

Version: 0.1 25/169

modules register their callback functions. After registration the callback functions are executed.

For the example in Figure 8 the initialization functions are called in the following order:

1.1 fct_targetInitPart1()
1.2 fct_targetInitPart2()
Χ

n.1 fct_targetGoalReady()

4.2.2 Platform API

During initialization GOAL requires the function goal_targetInitPre() to initialize the used platform:

Prototype GOAL_STATUS_T goal_targetInitPre(void)

Description This indication function initializes the complete platform and is called in the state
GOAL_FSA_INIT_GOAL in stage GOAL_STAGE_TARGET_PRE.

Parameters None

Return values GOAL return status, see chapter 8.3
Category Mandatory

4.2.3 Registration of media interfaces, media adapters and drivers

GOAL allows to combine various hardware and software components with each other. The various
components are connected to each other by a registration.
The platform-specific drivers are connected to platform-independent media adapters (MA). Media
adapters represent a generic driver interface. Media adapters can be connected to media
interfaces (MI). Media interfaces represent a generic connection interface between a media
adapter and a special higher layer module.

Example 1: A GOAL device shall store parameters in the nonvolatile memory (NVM). The parameters are split in
different blocks. The GOAL device uses the Synergy S7 platform. The GOAL device has to initialize and register the

following GOAL components:

1. Initialize the GOAL driver for the access to the NVM for the Synergy S7 platform. The GOAL
driver handles the accesses to the memory hardware.

2. The GOAL driver registers to the MA for the nonvolatile storage itself. The MA for the
nonvolatile storage provides a generic interface for accesses to the memory hardware.

3. The different memory blocks are managed about various memory regions. The MI for the
nonvolatile storage provides the management of memory regions and is added to the GOAL
project. The MI relates to the MA for the nonvolatile storage by a registration.

4. The application specifies a memory region for each parameter block. Each region is
registered to the MI for the nonvolatile storage.

The media interfaces and the media adapters can be identified by MI or MA unique IDΩǎ. The MI-
IDs and MA-IDs have separate lists and are independent from each other. During registration a

Version: 0.1 26/169

unique handle is created for each ID. Normally the registration is done in stage
GOAL_STAGE_TARGET_PRE in state GOAL_FSA_INIT_GOAL.

Example 2: The registration of the media interface, media adapter and driver are shown for MCTC over SPI:

1. Define a MA-ID and a MI-L5 ƛƴ Χ\goal\plat\board\ ...\goal_target_board.h or use default ID
GOAL_ID_DEFAULT.

2. Register the SPI driver in ғDh![ҔκǇƭŀǘκōƻŀǊŘκΧκƎƻŀƭψǘŀǊƎŜǘψōƻŀǊŘΦŎΣ ǘƘǳǎ ŎǊŜŀǘƛƴƎ ŀ ƳŜŘƛŀ
adapter (MA):

 /* register SPI driver */

 res = goal_drvSpiSynReg (GOAL_ID_DEFAULT, 0);

 if (GOAL_RES_ERR(res)) {

 goal_logErr ("failed to register Synergy SPI driver");

 return res;

 }

3. Register the MCTC MI with ID to the SPI MA as a parameter. The created MI will also utilize
the ID GOAL_ID_DEFAULT. Since SPI MA and MCTC MI are of different type, this is ok.

 /* register a new MCTC MI */

 res = goal_miMctcSpiReg (

 GOAL_ID_DEFAULT,

 GOAL_ID_DEFAULT,

 mpMiDmRead,

 mpMiDmWrite);

 if (GOAL_RES_ERR(res)) {

 goal_logInfo ("Unable to reg MI SPI");

 return res;

 }

Depending on the media type and the driver the registration functions can require different pa-
rameters.
Some drivers generate the MA-ID according to an implemented rule automatically. The rule is
documented
in the suitable GOAL Platform Manual.

4.2.4 Application-specific indication function for initialization

Application-specific initializations are implemented about the indication function appl_init()
located in <GOAL>/ appl/.../goal_appl.c normally:

Prototype GOAL_STATUS_T appl_init (void)

Description This indication function allows to include application-specific initialization steps
before the GOAL core modules or GOAL extension modules are initialized. GOAL

Version: 0.1 27/169

core modules must not be used. This indication function is called by GOAL
automatically in state GOAL_FSA_INIT_APPL_INIT.

Parameters None
Return values GOAL return status, see chapter 8.3

Category Optional
If appl_init() does not exist in the application, GOAL uses an empty default
function.

4.2.5 Install loop-controlled processes

Functions with low priority can be executed loop-controlled in the state GOAL_FSA_OPERATION.
GOAL provides a loop mechanism, called GOAL loop. There are the following possibilities to install
application-specific loop functions in the GOAL loop:

¶ implementation of the indication function appl_loop() or

¶ append the functions, which shall be called loop-controlled, to the list of loop functions.

4.2.5.1 Implementation of appl_loop()

GOAL provides the indication function appl_loop() for calling application-specific functions in the
GOAL loop:

Prototype void appl_loop (void)

Description This indication function allows to execute application-specific functions loop-
controlled. This indication function is called in the GOAL loop in state
GOAL_FSA_OPERATION.

Parameters None
Return values None

Category optional
If appl_loop() does not exist in the application, GOAL uses an empty default
function.

Example 3: The function applUpdate() shall be called loop-controlled. This function is implemented in the indication
function appl_loop().

void appl_loop (void) {

 applUpdate ();

}

Code 2 appl_loop example usage

Loop functions run in the main loop context of GOAL, thus these functions should be
limited in execution time to minimize the effect on other loop functions. Longer
processes should be split into multiple sequential steps.

Version: 0.1 28/169

4.2.5.2 Function list

GOAL provides a further possibility to integrate application-specific functions in the GOAL loop.
GOAL manages all functions, which shall be executed in the GOAL loop in state
GOAL_FSA_OPERATION about a function list. A function can be added to the loop function list by
function goal_mainLoopReg(). Each loop function must have the following function prototype:

void loopFunction (

 void

);

The loop function list is created in state GOAL_FSA_INIT. At the beginning of state
GOAL_FSA_INIT_APPL the loop function list is empty. The application can register loop functions.
The GOAL core modules and GOAL extension modules register their loop functions in state
GOAL_FSA_INIT_GOAL.

The order of execution of the loop functions depends on the order of registration. The first
registered loop function is executed at first.

Example 4: The function applUserLoop() shall be executed loop-controlled. The registration is made in appl_init().

void applUserLoop (void) {

 é

}

GOAL_STATUS_T appl_init (void) {

 GOAL_STATUS_T res; /* GOAL return value */

 res = goal_mainLoopReg (applUserLoop);

 return res;

}

Example 5: The function applDeviceLoop() shall be executed loop-controlled. The registration is made in appl_setup().

void applDeviceLoop (void) {

 é

}

GOAL_STATUS_T appl_setup (void) {

 GOAL_STATUS_T res; /* GOAL return value */

 res = goal_mainLoopReg (applDeviceLoop);

 return res;

}

Example 6: The function applFunc() shall be executed loop-controlled. The registration is made during initialization. In
Example 7 the function applActivate() is registered and called during initialization. The loop function is registered in

this initialization function.

void applFunc (void) {

 é

}

GOAL_STATUS_T applActivate (void) {

Version: 0.1 29/169

 GOAL_STATUS_T res; /* GOAL return value */

 res = goal_mainLoopReg (applFunc);

 return res;

}

4.2.6 Application-specific indication function for configuration

After initialization the application has the possibility to configure the GOAL system. The GOAL
system expects the configuration in the indication function appl_setup() located in
Χ\goal\appl\ ...\goal_appl.c normally:

Prototype GOAL_STATUS_T appl_setup (void)

Description This indication function allows to configure the GOAL system after initialization.
This indication function is called by GOAL automatically in state
GOAL_FSA_INIT_APPL_SETUP.

Parameters None

Return values GOAL return status, see chapter 8.3
Category Optional

If appl_setup() does not exist in the application, GOAL uses an empty default
function.

4.2.7 Integration of user functions in staging system

The stage table is created in state GOAL_FSA_INIT. At the beginning of state GOAL_FSA_INIT_APPL
the stage table is empty. Its entries are registered in the indication function appl_init() or by the
GOAL core modules and GOAL extension modules in state GOAL_FSA_INIT_GOAL. The registration
is made by function goal_mainStageReg(). Each callback function must have the following function
prototype:

GOAL_STATUS_T callbackFunction (

 void

);

All staged initialization functions are executed after registration in the state GOAL_FSA_INIT_GOAL.

Example 7: At the end of the initialization the application-specific function applActivate() shall be called. applActivate()

is assigned to stage GOAL_STAGE_GOAL. A new entry for the stage table is created about the declaration of
stageReady. This new entry is appended to the stage table by function goal_mainStageReg(). The registration is located

in the indication function appl_init().

GOAL_STAGE_HANDLER_T stageReady; /* create new entry for stage table */

GOAL_STATUS_T applActivate (void) {

 é

}

GOAL_STATUS_T appl_init (void) {

 GOAL_STATUS_T res; /* GOAL return value */

Version: 0.1 30/169

 res = goal_mainStageReg (GOAL_STAGE_GOAL, &st ageReady, GOAL_STAGE_INIT,

 applActivate);

 return res;

}

4.3 GOAL operation

In the state GOAL_FSA_OPERATION the GOAL system executes tasks, interrupt routines and loop-
controlled functions. The loop-controlled functions are executed by calling the function goal_loop()
in the main() function or in a task regularly without a valid cycle time. In goal_loop() the function
appl_loop() and/or the listed loop functions are executed. The registration of loop functions is
described in chapter 4.2.4.

4.4 GOAL finish

4.4.1 Halt

The GOAL system is stopped. The halt behavior is platform-specific and described in the suitable
GOAL Platform Manual. GOAL requires the indication function goal_targetHalt() as platform API
function:

Prototype void goal_targetHalt(void)

Description This indication function stops the program.

Parameters None

Return values None

Category Mandatory

4.4.2 Reset

The GOAL system is reset and starts again. The reset behavior is platform-specific and described in
the suitable GOAL Platform Manual. GOAL requires the indication function goal_targetReset() as
platform API function:

Prototype void goal_targetReset(void)

Description This indication function resets the platform and re-starts the program.
Parameters none

Return values none

Category mandatory

GOAL evaluates the return value of staging functions. If such a function returns an
error, the goal initialization will fail.

Version: 0.1 31/169

5 GOAL core modules (goal)

The directory goal contains the GOAL core modules. One source and one header files exist for each
GOAL core module. All GOAL core modules shall be integrated in the GOAL system, i.e. all GOAL
core modules are added to the compiler-project. The functions are described in detail in the GOAL
Reference Manual.

The header file goal_includes.h summarizes all header files of the GOAL core modules. The
application includes all public information of the GOAL core modules with this header file.

GOAL core modules are configured by compiler-defines and/or configuration variables. The
interface for the configuration by variables is in <GOAL>/goal/cm.

Some GOAL core modules provide a command line interface. The extensions for the handling via
the command line are saved in additional files (goal*_cli.*). This chapter only describes the
supported commands. The command line interface itself represents a GOAL extension module and
is documented in chapter 7.2.

5.1 Heap Memory Allocator (goal_alloc)

This GOAL core module provides functions to allocate memory. However GOAL considers the
inability of embedded systems to manage memory fragmentation, thus memory allocation is
limited to the initialization phase, i.e. it is not possible to allocate or free memory during normal
operation. The functions of the Memory Allocator are only allowed in the state GOAL_FSA_INIT.

The memory allocator uses a statically defined HEAP, which size is configurable. The memory is
allocated on base of the alignment specified by the compiler-define
GOAL_TARGET_MEM_ALIGN_NET. If a special alignment is required, the Memory Allocator
supplies special functions to set the desired alignment for the allocation of memory. The name of
ǘƘŜǎŜ ŦǳƴŎǘƛƻƴǎ ƘŀǾŜ ǘƘŜ ǇƻǎǘŦƛȄ ά!ƭƛƎƴέΣ ŜΦƎΦ ƎƻŀƭψƳŜƳ!ƭƭocAlign().

The Memory Allocator allows to check, that only the allocated memory range is in use by a
boundary checker. The boundary checker adds bytes around the allocated memory range and fills
the bytes with special patterns. The application can check that the patterns are unchanged by
calling the function goal_memCheck(). The boundary checker can be activated or deactivated by
the compiler-define GOAL_CONFIG_DEBUG_MEM_FENCES and shall only be used during
development.

GOAL memory allocation is limited to startup of the application. This originates in the
inability to handle memory fragmentation in embedded systems.

Version: 0.1 32/169

This GOAL core module provides no CM-variables and no command line interface.

GOAL files:

goal_alloc.[h,c]

example:

not available

5.1.1 Configuration

The following compiler-defines are available to configure the Memory Allocator:

GOAL_CONFIG_MM_EXT:
0: use goal memory alocator (default)
1: use stdlib alloc functionality (only for debugging)

GOAL_TARGET_MEM_ALIGN_NET:
alignment for network transfers, see chapter 8.4

GOAL_CONFIG_HEAP_SIZE:
size of the heap memory, see chapter 8.5

The following compiler-defines are available for debug purposes:

GOAL_CONFIG_DEBUG_MEM_FENCES:
0: memory boundary checker is disabled (default)
1: memory boundary checker is enabled

 GOAL_CONFIG_DEBUG_HEAP_USAGE:
 0: debug feature disabled
 1: log actual heap usage per component

5.1.2 Implementation guidelines

5.1.2.1 Allocate a memory range

1. Create a handle, which is directed to the allocated memory and allocate memory

void * pMem = NULL; /* memory pointer */

GOAL_STATUS_T res; /* GOAL return value */

res = goal_memCalloc (&pMem, 2048);

Using the stdlib memory allocator is a debugging features and may lead to additional
code being linked to the application, thus requiring more resources.

Version: 0.1 33/169

5.2 Bitmap handling (goal_bm)

This GOAL core module provides a function to allocate memory for a bit-field. Single bits of the bit-
field can be taken from the bit-field by a function. The function can use the bit. If the bit is not
more needed the function has to return the bit to the bit-field, see Figure 9. If a bit is used,
another function cannot take this bit from the bit-field. The bit-field must be allocated in state
GOAL_FSA_INIT.

Figure 9: bitmap handling

Locking mechanisms are not implemented for the functions of this GOAL core module. If the
locking of the bit-field is necessary, the locking must be done by the caller.

This GOAL core module provides no CM-variables and no command line interface.

GOAL files:

goal_bm.[h,c]

example:

not available

bit-field

bit 0 bit n

Function 1 Function 2

give bit back to

the bit-field

take bit from

bit-field

It is important to utilize the function as shown. Creating a pointer pointer variable
(void **ppMem) and passing this to the function as an argument
όƎƻŀƭψƳŜƳ/ŀƭƭƻŎόǇǇaŜƳΣ Χύ ǿƛƭƭ ŦŀƛƭΦ

Version: 0.1 34/169

5.2.1 Implementation guidelines

5.2.1.1 Create a bit-field with a lock

/* Create a handle to the bit - field. */

GOAL_BM_T * pFlags = NULL;

/* Create a handle for the lock to the bit - field. */

GOAL_LOCK_T * pLockFlags;

/* Create a binary lock to avoid multiple accesses to the bit - field. A binary lock

has the value range [0,1]. */

GOAL_STATUS_T res; /* GOAL return value */

res = goal_lockCreate (GOAL_LOCK_BINARY, &pLockFlags, 0, 1, GOAL_ ID_BM);

/* Allocate the memory for the bit - field in state GOAL_FSA_INIT for 16 bits. */

if (GOAL_RES_OK(res)) {

 res = goal_bmAlloc (&pFlags, 16);

}

5.2.1.2 Take a bit from the bit-field

GOAL_STATUS_T res; /* GOAL return status */

uint32_t bitNum; /* number of the bit */

/* Set the lock. If the lock is not available, wait on the lock forever. */

res = goal_lockGet (pLockFlags, GOAL_LOCK_INFINITE);

/* Take the next available bit from the bit - field. */

if (GOAL_RES_OK(res)) { /* lock is set successful */

 res = goal_bmBitReq (pFlags, &bitNum);

 /* Reset the lock. */

 goal_lockPut (pLockFlags);

}

5.2.1.3 Return a bit to the bit-field

GOAL_STATUS_T res; /* GOAL return status */

/* Set the lock. If the lock is n ot available, wait on the lock forever. */

res = goal_lockGet (pLockFlags, GOAL_LOCK_INFINITE);

/* Return the bit to the bit - field. */

if (GOAL_RES_OK(res)) { /* lock is set successful */

 res = goal_bmBitRel (pFlags, bitNum);

 /* Reset the lock. */

 goal_lockPut (pLockFlags);

}

5.3 Configuration Manager (goal_cm)

The Configuration Manager provides an interface to handle configuration variables during runtime. If a NVM is
available, the configuration variables can also be managed nonvolatile. Besides providing runtime configuration data
the CM also provies an interface for the Device Manger Tool/ GOAL Manager Tool.

Version: 0.1 35/169

The Configuration Manager organizes the configuration data module-wise, called CM-module. Each
CM-module contains a list of configuration variables, called CM-variables, see Figure 10.

Figure 10: data structure and data flow of the Configuration Manager

Each CM-variable is uniquely identified by a CM-module-ID and a CM-variable-ID. The
Configuration Manager allows to handle configuration variables of the CM-variable data types, see
chapter 8.2 The CM-modules and CM-variables must be installed in state GOAL_FSA_INIT.

The configuration data in the NVM are extended by a CRC-sum to detect data errors. The applied
CRC-algorithm is Fletcher-32 /Fletcher/.

The Configuration Manager differentiates between CM-variables with temporary and volatile
values. CM-variables can be marked as temporary or stable by function goal_cmSetVarValue().
Temporary CM-variables can be manipulated after loading from the NVM via a callback function.
Chapter 5.3.2 describes all callback functions of the Configuration Manager.

If there are changes at the interface of the Configuration Manager to the NVM or changes at the
variable list, the configuration data are not loaded from NVM. Changes on interfaces are
identifiable by the version number GOAL_CM_VERSION of the Configuration Manager in the file
...\goal\goal_cm.h.

NVS RAM

CM-module 1

CM-variable

1

CM-variable

n

CM-module n

CM-variable

1

CM-variable

2

CM-module 1

CM-module n

CM-variable

1

CM-variable

n

CM-variable

1

CM-variable

n

application

goal_cmLoad()

goal_cmGetVarById()

goal_cmSetVarValue

()

goal_cmSave()

Version: 0.1 36/169

It is possible to assign a name to each CM-variable. This possibility must be activated/deactivated
by the compiler-define GOAL_CM_NAMES.

The Configuration Manager can be controlled via the command line interface, see chapter 5.3.5.

GOAL files:

goal_cm.[h,c], goal_cm_id.h, goal_cm_t.h, goal_cm_cli.c, cm/goal_cm_cm.[h,c]

example:

Χ\goal\appl\00410_goal\cfg_demo

5.3.1 Configuration

5.3.1.1 Compiler-defines

The following compiler-defines are available to configure the Configuration Manager:

GOAL_CM_NAMES:
0: CM-modules and CM-variables are identified by ID numbers (default)
1: CM-modules and CM-variables are identified by ID numbers and names

5.3.1.2 CM-variables

The following CM-variables are available for the Configuration Manager:

CM-Module-ID GOAL_ID_CM

CM-variable-ID 0

CM-variable name CM_CM_VAR_SAVE
Description Each writing of any value to this CM-variable stores all CM-variables in the

NVM.

CM data type GOAL_CM_UINT8

Size 1 byte

Access -

Default value from NVS or 0

5.3.2 Callback functions

The Configuration Manager supports two kinds of callback functions:

¶ callback functions, which must be specified during implementation and

¶ callback functions, which can be specified during runtime

Version: 0.1 37/169

5.3.2.1 CM-variables based

During implementation callback functions

¶ for value validation and

¶ to inform the application about value changes
can be specified for each CM-variable. The specification of the callback functions is described in
chapter 5.3.3. The callback functions themselves are described in the following tables. The names
of the callback functions are application-specific.

Prototype GOAL_STATUS_T cbValidateFunc(uint32_t cmModId, uint32_t

cmVarId, GOAL_CM_VAR_T *pVar, void *pNewData, uint32_t

size)

Description This callback function is used to validate new values for the specified CM-variable.
Darameters cmModId number of the CM-module

cmVarId number of the CM-variable

pVar pointer to the entry in the CM-variable list for the CM-
variable

pNewData new specified value for the CM-variable
size size of the CM-variable in byte

Return
values

GOAL return status, see chapter 8.3

Category optional
If a callback function is not available, specify NULL in the CM-variable list.

Registration by compilation

Prototype GOAL_STATUS_T cbChangedFunc(uint32_t cmModId, uint32_t

cmVarId, GOAL_CM_VAR_T *pVar)

Description This callback function is used to inform other components about the changing of
the value of the CM-variable.

Parameters cmModId number of the CM-module

cmVarId number of the CM-variable
pVar pointer to the entry in the CM-variable list for the CM-

variable
Return
values

GOAL return status, see chapter 8.3

Category optional
If a callback function is not available, specify NULL in the CM-variable list.

Registration by compilation

Version: 0.1 38/169

5.3.2.2 CM-module based

During runtime callback functions

¶ for customer-specific loading of CM-variables from the NVM,

¶ for customer-specific saving of CM-variables to the NVM,

¶ to change values for temporary CM-variables after loading from the NVM by function
goal_cmLoad()

can be configured for each CM-module by function goal_cmAddModule(). The callback functions
are described in the following tables. The names of the callback functions are application-specific.

Prototype GOAL_STATUS_T cbL oadFunc(uint32_t cmModId, uint32_t

cmVarId, GOAL_CM_VAR_T *pVar, uint32_t * pSize)

Description This callback function is used to load a CM-variables from NVM customer-specific.
Parameters cmModId number of the CM-module

cmVarId number of the CM-variable
pVar pointer to the entry in the CM-variable list for the CM-

variable

pSize returns the current size of the CM-variable in byte

Return
values

GOAL return status, see chapter 8.3

Category optional
If not available, specify NULL in the call of goal_cmAddModule().

Registration during runtime about function goal_cmAddModule()

Prototype GOAL_STATUS_T cbSaveFunc(uint32_t cmModId, uint32_t

cmVarId, GOAL_CM_VAR_T *pVar)

Description This callback function is used to save a CM-variables in the NVM customer-specific.

Parameters cmModId number of the CM-module

cmVarId number of the CM-variable

pVar pointer to the entry in the CM-variable list for the CM-
variable

pSize returns the current size of the CM-variable in byte

Return
values

GOAL return status, see chapter 8.3

Category optional
If not available, specify NULL in the call of goal_cmAddModule().

Registration during runtime about function goal_cmAddModule()

Prototype GOAL_STATUS_T cbTmpsetFunc(uint32_t cmModId, uint32_t

cmVarId, GOAL_CM_VAR_T *pVar, uint32_t *pNewSize)

Description This callback function allows to overwrite the value of the temporary CM-variable

Version: 0.1 39/169

after loading from the NVM. If no callback function is specified, GOAL uses the
default function goal_cmTmpSet() and clears the value to 0.

Parameters cmModId number of the CM-module
cmVarId number of the CM-variable

pVar pointer to the entry in the CM-variable list for the CM-
variable

pNewSize returns the current size of the CM-variable in byte,
goal_cmTmpSet() returns 0

Return
values

GOAL return status, see chapter 8.3

Category optional
If not available, specify NULL in the call of goal_cmAddModule().

Registration during runtime about function goal_cmAddModule()

5.3.3 Creating a CM-module and a variable list

The Configuration Manager provides a scheme for the creation of a CM-module and a list of CM-
variables. It is recommended to use this scheme for application-specific CM-modules too.

1. For each CM-module a unique number is necessary.

Example:
#define APPL_CM_MOD_ID 0x00EE0000

2. The CM-variables, which shall be available via the Configuration Manager, must be specified

and assigned to a CM-variable-ID. Because the CM-variable-ID is also used as list index, the
counting has to start with 0 and must be consecutively. Create a enum for the CM-variable-IDs
to access the configuration variable by a symbolic name.
Example:

typedef enum {

 APPL_CM_VAR_1,

 APPL_CM_VAR_2

} APPL_CM_VARS_ID_T;

3. The CM-variables are listed with the following properties:

¶ CM-variable-ID,

¶ CM-variable data types of the CM-variable,

¶ maximal size of the CM-variable in byte,

¶ a callback function for the validation of the written value,

¶ a callback function to inform the application about the change of the variableΩǎ value and

¶ the name of the CM-variable, if naming is switched on by the compiler-define
GOAL_CM_NAMES.

Create a table with the properties for all CM-variables assigned to the CM-module. Each line of

Version: 0.1 40/169

the table represents one CM-variable according to the structure GOAL_CM_VARENTRY_T. This
structure contains the properties of the CM-variable and pointer references for the internal
handling. Please set the internal pointer references to NULL. If no callback functions are
available for validation and/or change reports, set the references also to NULL.

Example 8: for GOAL_CM_NAMES = 0 with callback functions

static GOAL_CM_VARENTRY_T applCmVars[] = { \

 {APPL_CM_VAR_1, GOAL_CM_UINT8, 1, NULL, applValidateFct, applChangeFct, NULL,

 NULL

 },

 {APPL_CM_VAR_2, GOAL_CM_UINT32, 4, NULL, applValidateFct, applChangeFct, NULL,

 NULL

 }

}

Example 9: for GOAL_CM_NAMES = 0 without callback functions

static GOAL_CM_VARENTRY_T applCmVars[] = { \

 {APPL_CM_VAR_1, GOAL_CM_UINT8, 1, NULL, NULL, NULL, NULL, NULL},

 {APPL_CM_VAR_2, GOAL_CM_UINT32, 4, NULL, NULL, NULL, NULL, NULL}

}

4. Now the created CM-module can be integrated in the code as described in chapter 5.3.6.1.

5.3.4 Virtual Variables

GOAL CM supports virtual variables, which only are stored in memory and not written to the non
volatile storage.
Virtual variables are created in stage GOAL_STAGE_CM_MOD_ADD using the function
goal_cmRegVarVirtual.

Prototype GOAL_STATUS_T goal_ cmRegVarVirtual(uint32_t modId,

unt32_t varId, GOAL_CM_DATATYPE_T type, uint32_t

sizeMax, goal_cm_validate validate, goal_cm_changed

changed);

Description Register a virtual cm variable
Parameters modId Module ID

varId Variable ID
type CM datatype

sizeMax Maximum size of variable

goal_cm_validate Validation callback or NULL
goal_cm_changed Modification callback or NULL

Return values GOAL return status, see chapter 8.3
Category Optional

Condition -

 /* add virtual variables */

Version: 0.1 41/169

 if (GOAL_RES_OK(res)) {

 res = goal_cmRegVarVirtual (

 2, /* module Id */

 CM_CM_VAR_SAVE, /* variable Id */

 GOAL_CM_UINT8, /* type */

 1, /* size */

 NULL, /* validation callback */

 goal_cmCmSave /* modification callback*/

);

 }

Code 3 create virtual cm variable

5.3.5 Command line interface

Command cm set <modId> <varId> <newVal>

Description Sets the value of an existing variable identified by the CM-module-ID and CM-
variable-ID in the Configuration Manager.

Parameter <modId> number of the CM-module

<varId> number of the CM-variable within the CM-module, value
range 00000001h ς FFFFFFFFh

<newVal> new value
Integer values are entered with an optional sign. String
ǾŀƭǳŜǎ ōŜƎƛƴ ŀƴŘ ŜƴŘ ǿƛǘƘ ά-character.

Command cm show [<mod I d> <var I d>]

Description Shows the value of the variable identified by the CM-module-ID and CM-variable-
id or all CM-variables. If no IDs are given all CM-variables of all CM-modules are
printed out to the command line interface.

Parameter <modId> number of the CM-module, value range 00000001h ς
FFFFFFFFh

<varId> number of the CM-variable within the CM-module, value
range 00000001h ς FFFFFFFFh

5.3.6 Implementation guidelines

5.3.6.1 Creating a new CM-module

1. Specify a unique CM-module-ID number, see chapter 5.3.3.
2. Specify the list of CM-variables, see chapter 5.3.3.

3. Create a variable for the CM-module-ID.

GOAL_CM_MODDEF_T cmMod;

cmMod.modId = APPL_CM_MOD_ID;

Version: 0.1 42/169

Register the CM - variables by function goal_cmRegModule() in the state

GOAL_FSA_INIT_APP L, sta ge GOAL_STAGE_CM_MOD_REG.

GOAL_STATUS_T res; /* GOAL return status */

res = goal_cmRegModule (applCmVars);

4. In stage GOAL_STAGE_CM_MOD_ADD add the CM-variable list to the CM-module by function
goal_cmAddModule() in the state GOAL_FSA_INIT_APPL and do not specify callback functions
for customer-specific nonvolatile load and save and the modification of temporary CM-
variables after loading from NVM.

if (GOAL_RES_OK(res)) {

 res = goal_cmAddModule (&cmMod, applCmVars, NULL, NULL, NULL);

}

Write a value to a CM-variable by function goal_cmSetVarValue().

uint32_t val = 0x11223344;

if (GOAL_RES_OK(res)) {

 res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_2,

 (void *) &val, 4, GOAL_FALSE, NULL);

}

5. Read the value of a CM-variable about function goal_cmGetVarById().

GOAL_CM_VAR_T * pEntry;

if (GOAL_RES_OK(res)) {

 res = goal_cmGetVarById (APPL_CM_MOD_ID, APPL_CM_VAR_2, &pEntry);

 if (GOAL_RES_OK(res)) {

 val = GOAL_CM_VAR_UINT32(pEntry);

 }

}

5.3.6.2 Add a new CM-variable to a CM-module

1. Add the CM-variable to the variable list, see chapter 5.3.3.

2. Create a variable for the CM-module-ID.

GOAL_CM_MODDEF_T cmMod;

cmMod.modId = APPL_CM_MOD_ID;

3. Register the CM-module by function goal_cmRegModule() in the state GOAL_FSA_INIT_APPL.

GOAL_STATUS_T res; /* GOAL return status */

res = goal_cmRegModule (applCmVars);

4. Add the CM-variable list to the CM-module by function goal_cmAddModule() in the state

GOAL_FSA_INIT_APPL and do not specify callback functions for customer-specific nonvolatile
load and save and the modification of temporary CM-variables after loading from NVM.

if (GOAL_RES_OK(res)) {

Version: 0.1 43/169

 res = goal_cmAddModule (&cmMod, applCmVars, NULL, NULL, NULL);

}

5. Write a value to a CM-variable by the function goal_cmSetVarValue().

uint8_t val = 0xA5;

if (GOAL_RES_OK(res)) {

 res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_1,

 (void *) &val, 1, GOAL_FALSE, NULL);

}

6. Read the value of a CM-variable by the function goal_cmGetVarById().

GOAL_CM_VAR_T * pEntry;

if (GOAL_RES_OK(res)) {

 res = goal_cmGetVarById (APPL_CM_MOD_ID, APPL_CM_VAR_1, &pEntry);

 if (GOAL_RES_OK(res)) {

 val = GOAL_CM_VAR_UINT8(pEntry);

 }

}

5.3.6.3 Load and save CM-variables nonvolatile

1. Create a variable for the CM-module-ID.

GOAL_CM_MODDEF_T cmMod;

cmMod.modId = APPL_CM_MOD_ID;

2. Register the CM-module by function goal_cmRegModule() in the state GOAL_FSA_INIT_APPL.

GOAL_STATUS_T res; /* GOAL return status */

res = goal_cmRegModule (applCmVars);

3. Add the CM-variable list to the CM-module by function goal_cmAddModule() in the state

GOAL_FSA_INIT_APPL and do not specify callback functions for customer-specific nonvolatile
load and save and the modification of temporary CM-variables after loading from NVM.

if (GOAL_RES_OK(res)) {

 res = goal_cmAddModule (&cmMod, applCmVars, NULL, NULL, NULL);

}

4. Load all CM-variables from NVM by function goal_cmLoad().

if (GOAL_RES_OK(res)) {

 res = goal_cmLoad ();

}

5. Write a value to a CM-variable by the function goal_cmSetVarValue().

uint8_t val = 0xA5;

if (GOAL_RES_OK(res)) {

 res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_1,

 (void *) &val, 1, GOAL_FALSE, NULL);

}

Version: 0.1 44/169

6. Save all CM-variables nonvolatile by function goal_cmSave().

if (GOAL_RES_OK(res)) {

 res = goal_cmSave ();

}

5.4 Generic Ethernet Frame Handler (goal_eth)

This GOAL core module provides functions to send and receive Ethernet frames, see Figure 11.

The Ethernet Frame Handler receives all Ethernet frames. The frame processing load can be
reduced by activation of the MAC address filtering by the compiler-define
GOAL_CONFIG_MAC_ADDR_FILTER. Then only all broadcast/multicast and the own unicast
ethernet frames pass the MAC filter and are received. This is only a software filter, which drop
packets not directed to the device.

The Ethernet Frame Handler identifies received ethernet frames on base of the

¶ MAC address

¶ the Ether Type

The values for the Ether Type are standardized in IEEE 802.3. GOAL supports the following Ether
Types:

¶ 0800h: IP Internet Protocol, version 4 (IPv4)

¶ 0806h: Address Resolution Protocol (ARP)

¶ 8100h: VLAN Tag

Other Ether Types are registeres by additional software components, such as the PNIO
communication stack,

The Ethernet Frame Handler accepts all ethernet frames if the Ether Type is set to
GOAL_ETH_ETHERTYPE_ANY.
The kind of the identification is configured by function goal_ethProtoAdd() or
goal_ethProtoAddPos().

Figure 11: ethernet frame handler as part of the GOAL system

ethernet bus

goal_eth

TCP/IP-stack applicationgoal_net
ethernet frame channel 1

ethernet frame channel 2

Version: 0.1 45/169

The ethernet frames can be divided in frames with low and high priority. The priority is also
specified by function goal_ethProtoAdd() or goal_ethProtoAddPos(). The type of identification and
the priority determine the handling of received frames, see Figure 12.

Figure 12: RX ethernet frame handling

During the interrupt-controlled receipt the callback function specified by function
goal_ethProtoAdd() or goal_ethProtoAddPos() is called immediately.
For the loop-controlled handling the received message is stored internal and the callback function
is called in the GOAL loop. The Ethernet Frame handler registers the function goal_ethLoop() for
this purpose.

Ethernet controllers provide more or less possibilities to analyze the ethernet communication by
counting of events represented as statistics, see chapter 5.4.9.

The generic Ethernet Frame Handler can be controlled via the command line interface, see chapter
5.4.9.

GOAL files:

goal_eth.[h,c]

example:

received ethernet frame

identified by MAC address identified by Ether Type

high priority low priority high priority low priority

RX interrupt-

controlled, callback

is executed

RX loop-controlled,

callback is

executed

RX interrupt-

contolled, callback

is executed

RX loop-controlled,

callback is

executed

all ethernet frames accepted

(GOAL_ETH_ETHERTYPE_ANY) specified Ether Type
unspecified Ether

Type

Version: 0.1 46/169

not available

5.4.1 Configuration

5.4.1.1 Compiler-defines

The following compiler-defines are available to configure the generic Ethernet Frame Handler:

GOAL_CONFIG_ETHERNET:
0: generic Ethernet Frame Handler is disabled (default)
1: generic Ethernet Frame Handler is enabled

GOAL_TARGET_ETH_PORT_COUNT:
number of external ports (default: platform-specific)

GOAL_CONFIG_MAC_ADDR_FILTER:
0: MAC address filtering disabled (default)
1: MAC address filtering enabled

GOAL_ETH_NAMES:
0: names for ethernet commands are not available (default)
1: names for ethernet command available

GOAL_CONFIG_ETH_STATS:

0: support of ethernet statistics is disabled (default)
1: support of ethernet statistics is enabled

GOAL_CONFIG_ETH_STATS_NAMES:
0: short description of ethernet statistic is not available (default)
1: short description of ethernet statistics is available

GOAL_CONFIG_TDMA:

0: time division multiple access disabled (default)
1: time division multiple access enabled

The following compiler-defines are available for debug purposes:

GOAL_CONFIG_LOGGING_TARGET_SYSLOG:
0: no output of ethernet frames (default)
1: output of ethernet frames

GOAL_CONFIG_LOGGING:
0: output of warnings disabled (default)
1: output of warnings enabled

Version: 0.1 47/169

5.4.1.2 CM-variables

The following CM-variables are available to configure the Configuration Manager:

CM-Module-ID GOAL_ID_ETH

CM-variable-ID 0
CM-variable name ETH_CM_VAR_MAC

Description MAC address
CM data type GOAL_CM_GENERIC

Size 6 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_ETH

CM-variable-ID 1

CM-variable name ETH_CM_VAR_LINK
Description mask for the link state of the ethernet port

CM data type GOAL_CM_UINT32
Size 4 bytes

Default vaue from NVS or 0

CM-Module-ID GOAL_ID_ETH

CM-variable-ID 2
CM-variable name ETH_CM_VAR_SPEED

Description mask for the speed of the ethernet port

CM data type GOAL_CM_UINT32
Size 4 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_ETH
CM-variable-ID 3

CM-variable name ETH_CM_VAR_DUPLEX
Description mask for duplex property of the ethernet port

CM data type GOAL_CM_UINT32

Size 4 bytes
Default value from NVS or 0

CM-Module-ID GOAL_ID_ETH

CM-variable-ID 4

Version: 0.1 48/169

CM-variable name ETH_CM_VAR_PORTCNT

Description number of ethernet ports

CM data type GOAL_CM_UINT32
Size 4 bytes

Default value from NVS or 0

The generic Ethernet Frame Handler uses GOAL queues internally. The size of these queues can be
optimized for the current platform. The configuration is described in chapter 5.12.4.

5.4.2 Callback functions

The ethernet frame handler supports a callback function:

¶ for the receipt of ethernet frames and

¶ to inform the application about the changed state of the ethernet port.

The names of the callback functions are application-specific.

Prototype GOAL_STATUS_T cbEthFrameReceivedFunc(GOAL_BUFFER_T

** ppBuf)

Description This callback function is used to deal with the received ethernet frame.

Parameters ppBuf pointer at the buffer containing the received ethernet frame
Return
values

GOAL return status, see chapter 8.3

Category mandatory, if the Ethernet Frame Handler is used
Registration during runtime via function goal_ethProtoAdd()

Prototype void cbEthPortChangedFunc(GOAL_ETH_PORT_T id, uint32_t

maskChg, struct GOAL_ETH_PORT_STATE_T *pState)

Description This callback function is called to inform the application about the changed state of
the ethernet port.

Parameters id number of the ethernet port

maskChg mask for the changed state bits

pState new state of the ethernet port

Return
values

None

Category Optional
Registration during runtime via function goal_ethPortStateCbReg()

Version: 0.1 49/169

5.4.3 Platform API

GOAL requires the following indication function to communicate via ethernet:

Prototype GOAL_STATUS_T goal_targetEthInit(void)

Description This indication function initializes the ethernet interface for the selected platform.
This function is called in the state GOAL_FSA_INIT_GOAL in stage
GOAL_STAGE_TARGET_PRE.

Parameters none

Return values GOAL return status, see chapter 8.3

Category mandatory, if the Ethernet Frame Handler is used

Condition compiler-define GOAL_CONFIG_ETHERNET must be set to 1

Prototype GOAL_STATUS_T goal_targetEthCmd(GOAL_ETH_CMD_T cmd,

GOAL_BOOL_T wrFlag, uint32_t port, void *pArg)

Description This indication function executes an ethernet command.
Parameters cmd ethernet command

wrFlag access direction

¶ GOAL_TRUE: execute the set option of the ethernet
command

¶ GOAL_FALSE: execute the read option of the ethernet
command

port number of ethernet port

pArg argument to the ethernet command
Return values GOAL return status, see chapter 8.3

Category mandatory, if the Ethernet Frame Handler is used

Condition compiler-define GOAL_CONFIG_ETHERNET must be set to 1

Prototype GOAL_STATUS_T goal_targetGetMacAddr(GOAL_ETH_PORT_T

portIdx, char *pMacAddr)

Description This indication function returns the MAC address of the ethernet interface of the
specified board.

Parameters portIdx number of the ethernet port

pMacAddr buffer to return the MAC address

Return values GOAL return status, see chapter 8.3

Category optional
Condition compiler-define GOAL_CONFIG_ETHERNET must be set to 1

Prototype void goal_targetEthSend(void)

Description This indication function transmits an ethernet frame from the internal transmit
GOAL queue.

Version: 0.1 50/169

Parameters none

Return values none

Category mandatory, if the Ethernet Frame Handler is used
Condition compiler-define GOAL_CONFIG_ETHERNET must be set to 1

5.4.4 Ethernet interface

GOAL makes a general interface available to configure the ethernet interface and to get state
information about the ethernet interface, e.g. the switch or PHY. There are two possibilities to
access to the configuration setting or the state information:

¶ via special functions of the Ethernet Frame Handler or

¶ via the ethernet command and the function goal_ethCmd().
The implementation and the support of the ethernet commands depend on the platform. The
platform-specific details are described in the GOAL Platform Manual.

GOAL provides the following commands for the configuration of the ethernet interface:

Ethernet
command

GOAL_ETH_CMD_AUTONEG_PROGRESS

Description get the state of the auto-negotiation process:

¶ GOAL_ETH_AUTONEG_INPROGRESS,

¶ GOAL_ETH_AUTONEG_FAIL_ALL,

¶ GOAL_ETH_AUTONEG_FAIL_DUPLEX,

¶ GOAL_ETH_AUTONEG_DONE,

¶ GOAL_ETH_AUTONEG_SKIPPED

Special set
function

--

Special get
function

goal_ethAutonegProgressGet()

Ethernet
command

GOAL_ETH_CMD_AUTONEG

Description set or get the behavior for the auto-negotiation:

¶ GOAL_ETH_AUTONEG_ON,

¶ GOAL_ETH_AUTONEG_OFF

Special set
function

goal_ethAutonegSet()

Special get
function

goal_ethAutonegGet()

Version: 0.1 51/169

Ethernet
command

GOAL_ETH_CMD_AUTONEG_RESTART

Description restart the auto-negotiation process

Special set
function

--

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_DUPLEX

Description set or get the transfer mode:

¶ GOAL_ETH_DUPLEX_HALF,

¶ GOAL_ETH_DUPLEX_FULL

Special set
function

goal_ethLinkDuplexSet()

Special get
function

goal_ethLinkDuplexGet()

Ethernet
command

GOAL_ETH_CMD_HW_FAULT

Description get an indicator for the last hardware fault

Special set
function

--

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_SPEED

Description set or get the rate of transfer: GOAL_ETH_SPEED_10, GOAL_ETH_SPEED_100
or GOAL_ETH_SPEED_1000 Mbit/s

Special set
function

goal_ethLinkSpeedSet()

Special get
function

goal_ethLinkSpeedGet()

Ethernet
command

GOAL_ETH_CMD_SPEED_MAX

Description get the maximal allowed rate of transfer:

Version: 0.1 52/169

¶ GOAL_ETH_SPEED_10 Mbit/s,

¶ GOAL_ETH_SPEED_100 Mbit/s,

¶ GOAL_ETH_SPEED_1000 Mbit/s

Special set
function

--

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_LINK_STATE

Description get the current state of the ethernet connection:

¶ GOAL_ETH_STATE_UP,

¶ GOAL_ETH_STATE_DOWN

Special set
function

--

Special get
function

goal_ethLinkStateGet()

Ethernet
command

GOAL_ETH_CMD_PORT_STATE

Description switch on/off the ethernet port or get the current state of the ethernet port:

¶ GOAL_ETH_STATE_UP,

¶ GOAL_ETH_STATE_DOWN
Special set
function

goal_ethPortStateSet()

Special get
function

goal_ethPortStateGet()

Ethernet
command

GOAL_ETH_CMD_LINK_CAPABILITIES

Description get the supported transfer mode and transfer rate
The return value has data type uint32_t and is bit-coded. The bits have the
following meaning for bit value 1:

¶ bit 0: 10 Mbit/s in half-duplex mode is supported

¶ bit 1: 10 Mbit/s in full-duplex mode is supported

¶ bit 2: 100 Mbit/s in half-duplex mode is supported

¶ bit 3: 100 Mbit/s in full-duplex mode is supported

¶ bit 4: 1000 Mbit/s in half-duplex mode is supported

¶ bit 5: 1000 Mbit/s in full-duplex mode is supported

Special set --

Version: 0.1 53/169

function

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_AUTONEG_ADVERTISMENT

Description set or get the list for transfer rate and transfer mode for the auto-negotiation
process
The value has the data type uint32_t and is bit-coded. The bits have the
following meaning for bit value 1:

¶ bit 0: 10 Mbit/s in half-duplex mode is used

¶ bit 1: 10 Mbit/s in full-duplex mode is used

¶ bit 2: 100 Mbit/s in half-duplex mode is used

¶ bit 3: 100 Mbit/s in full-duplex mode is used

¶ bit 4: 1000 Mbit/s in half-duplex mode is used

¶ bit 5: 1000 Mbit/s in full-duplex mode is used

Special set
function

--

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_PORT_ADMIN_STATE

Description get the current state of the ethernet port:

¶ GOAL_ETH_STATE_UP,

¶ GOAL_ETH_STATE_DOWN

Special set
function

--

Special get
function

--

Ethernet
command

GOAL_ETH_CMD_LED_LINK

Description set or get the PHY link LED state

Special set
function

--

Special get
function

--

Version: 0.1 54/169

Ethernet
command

GOAL_ETH_CMD_PORT_COUNT

Description get the number of installed ethernet ports
Special set
function

--

Special get
function

--

5.4.5 VLAN

GOAL makes a general interface available to configure the VLAN capabilities of the underlying
switch. The access to the configuration setting or the state information is realized via ethernet
commands and the function goal_ethCmd(). The implementation and the support of the ethernet
commands depend on the platform.

GOAL provides the following ethernet commands for the VLAN capabilities:

Ethernet command Description

GOAL_ETH_CMD_VLAN_MODE_IN set or get the input mode of the VLAN processing

GOAL_ETH_CMD_VLAN_MODE_OUT set or get the output mode of the VLAN processing
GOAL_ETH_CMD_VLAN_DEF set or get the default VLAN-ID and priority for a port

GOAL_ETH_CMD_VLAN_PORT_ADD adds a port as a member of the given VLAN-ID

GOAL_ETH_CMD_VLAN_PORT_REM removes a port as a member from the given VLAN-ID
GOAL_ETH_CMD_VLAN_TABLE_CNT get the VLAN table entry count

GOAL_ETH_CMD_VLAN_TABLE_GET shows the entries of the VLAN table
GOAL_ETH_CMD_VLAN_VERIFY enables/disables the VLAN domain verification for the

given port

GOAL_ETH_CMD_VLAN_DISCUNK enabled/disables the discarding of frames with unknown
VLAN-IDs

5.4.6 MAC table

The MAC table subgroup provides an interface to the MAC table settings and allows to access to
specific MAC table entries.

GOAL provides the following ethernet commands for the handling of AC table settings:

Ethernet command Description

GOAL_ETH_CMD_MACTAB_CONF enables/disables the given feature of the MAC table:

¶ learning : Automatic MAC address learning

¶ ageing : MAC address ageing for dynamic entries

Version: 0.1 55/169

Ethernet command Description

¶ migration : Allows the migration of MAC addresses
between ports

¶ discunknown : Discard frames with unknown destination
address

¶ pervlan : Learn MAC addresses per VLAN allowing the
same MAC address in different VLANs

GOAL_ETH_CMD_MACTAB_SET set an entry in the MAC table

GOAL_ETH_CMD_MACTAB_GET get an entry from the MAC table
GOAL_ETH_CMD_MACTAB_CLR clear MAC table

5.4.7 Port settings

Ethernet command Description

GOAL_ETH_CMD_PORT_FWD_ADD add port to forward table
GOAL_ETH_CMD_PORT_FWD_DEL delete port from forward table

GOAL_ETH_CMD_PORT_AUTH set/get port authorization

GOAL_ETH_CMD_PORT_CTRL_DIR set/get port controlled directions
GOAL_ETH_CMD_PORT_EAPOL_ENABLE set/get port EAPOL frame reception mode

5.4.8 QoS settings

Ethernet command Description

GOAL_ETH_CMD_QOS_MODE set/get QoS mapping type

GOAL_ETH_CMD_QOS_PRIO_VLAN set/get QoS VLAN priority
GOAL_ETH_CMD_QOS_PRIO_IP set/get QoS IP priority

GOAL_ETH_CMD_QOS_PRIO_TYPE set/get QoS Ethertype priority

5.4.9 Implementation guidelines

5.4.9.1 Configure speed rate by special command

1. Set the transfer rate to 100 Mbit/s for the ethernet port with the number portNum:

GOAL_STATUS_T res; /* GOAL return status */

res = goal_ethLinkSpeedSet (portNum, GOAL_ETH_SPEED_100);

Version: 0.1 56/169

5.4.9.2 Restart the autonegotiation with goal_ethCmd()

1. Reset the autonegotiation for the ethernet port with the number portNum:

GOAL_STATUS_T res; /* GOAL return status */

res = goal_ethCmd (GOAL_ETH_CMD_AUTONEG_RESTART, GOAL_TRUE, portNum, NULL);

5.4.9.3 Send and receive ethernet frames

Ethernet frames shall be send from the application directly, see Figure 11 ethernet channel2:
1. Create a callback function to handle received ethernet frames application-specific:

GOAL_STATUS_T cbEthFrameReceivedFunc (GOAL_BUFFER_T ** ppBuf) {

 é

}

2. Register the callback function for the receipt of IPv4 ethernet frames with a high priority:

GOAL_STATUS_T res; /* GOAL return status */

re s = goal_ethProtoAdd (GOAL_TRUE, GOAL_ETH_ETHERTYPE_IPV4, NULL,

 cbEthFrameReceivedFunc);

3. If an ethernet frame was received, the callback function cbEthFrameReceivedFunc() is called

and the application can handle the ethernet frame.

4. Send an ethernet frame:

GOAL_BUFFER_T * pBuf = NULL;

/* get buffer */

goal_ethGetNetBuf (&pBuf);

/* build frame by writing to pBuf - > ptrData */

GOAL_MEMCPY(pBuf- >ptrData, buf, len);

/* write frame length to pBuf - >dataLen */

pBuf - >dataLen = len;

/* specify egress port */

pBuf - >netPort = GOAL_ETH_PORT_HOST;

goal_ethSend (&pBuf, GOAL_NET_TX_LOW);

/* pBuf was released by goal_ethSend */

5.5 Command line interface

5.5.1 Naming and parameter conventions

Version: 0.1 57/169

5.5.2 Actions

Every command executes a so-called action describing the functionality of the command. The
following table provides an overview of actions that may occur:

Action Function Example

set Set parameter values eth vlan verify set 1 on

show Show parameter values. The action may
accept one or more optional parameters

rstp port show

help Show a help string for specific
(sub)command

rstp port help

add Adding a value to a set of values e.g.
adding a port to a port map.

eth mactab mac add

00:11:22:33:44:55 1

rem Removing a value from a set of values
e.g. removing a port from a port map.

eth mactab mac rem

00:11:22:33:44:55 1

Not all commands implement all actions.

5.5.3 Command parameter conventions

5.5.3.1 Integer values

Integer values are currently only accepted with a base of 10 and may optionally contain a sign.
As an example, the following command sets the port membership of port 1 to VLAN 1024:

$ eth vlan port add 1 1024

5.5.3.2 Strings

{ǘǊƛƴƎǎ ŀǊŜ ǎǘŀǊǘŜŘ ŀƴŘ ŜƴŘŜŘ ǿƛǘƘ ŀ ά-character. As an example, the following command sets the
value of config variable 0-м ǘƻ ǾŀƭǳŜ άŜȄŀƳǇƭŜέ

$ cm set 0 1 ñexampleò

5.5.3.3 Ports

Ports are entered as integer values starting with 0 up to max. port number + 1. Max. port number
+1 represents the management port. A 5 port switch provides ports 0 ς 3 (external ports) and port
4 as management port.
For example, the following commands set the default VLAN tag for port 1 to 1024 with prio 7:

$ eth vlan default set 1 1024 7

Version: 0.1 58/169

5.5.3.4 MAC addresses

MAC addresses are given in the format xx:xx:xx:xx:xx:xx where xx stands for a two char
hex number. For example, the following command adds port 3 to MAC address 00:11:22:33:44:55

$ eth mactab mac add 00:11:22:33:44:55 3

5.5.3.5 IP addresses

IP addresses are given in the format xxx.xxx.xxx.xxx where xxx stands for a one- to three-
digit decimal number. For example, the following command sets the IP address, netmask and
gateway for the TCP/IP stack:

$ net ip set 192.168.1.133 255.255.255.0 0.0.0.0

5.5.4 Ethernet Interface

The eth command provides an interface to Ethernet interface including access to VLAN
configuration, Ethernet statistics aso.

5.5.5 VLAN

The VLAN subgroup provides an interface for configuring the VLAN capabilities of the underlying
switch.

Command eth vlan mode in set <port> <ptrover|replace|tag|disable>

Description Sets the input mode of the VLAN processing.
Parameter <port> The port as number starting from 0 for

the first port
<ptrover|replace|tag|disable> The VLAN input processing mode to

set:

¶ ptrover :
Passthrough/Overwrite

¶ replace : If untagged, add the
tag, if single tagged, overwrite
the tag.

¶ tag : Insert a tag always

¶ disable : Disable input
processing

Command eth vlan mode in show [port]

Description Shows the input of the given port or all ports if no port is given

Version: 0.1 59/169

Parameter [port] The optional port where the input
mode shall be shown.

Command eth vlan mode out set <port> <tagthr|domain|strip|disable>

Description Sets the output mode of the VLAN processing.

Parameter <port> The port as number starting from 0 for the
first port

<tagthr|domain|strip|disable> The VLAN input processing mode to set:

¶ tagthr : Tag thru

¶ domain : Transparent mode

¶ strip : Strip (outer) tag

¶ disable : Disable output
processing

Command eth vlan mode out show [port]

Description Shows the output processing mode of the given port or all ports if no port is given
Parameter [port] The optional port where the output mode shall be shown.

Command eth vlan port add <port> <vlanid>

Description Adds a port as a member of the given VLAN id.

Parameter <port> The port as number starting from 0 for the first port
<vlanid> The VLAN id where the port shall become a member.

Command eth vlan port rem <port> <vlanid>

Description Removes a port as a member from the given VLAN id.

Parameter <port> The port as number starting from 0 for the first port
<vlanid> The VLAN id where the port shall be removed from.

Command eth vlan table show

Description Shows the entries of the VLAN table.

Parameter None

Command eth vlan default set <port> <vlanid> <prio>

Description Sets the default VLAN id and priority for a port.
Parameter <port> The port as number starting from 0 for the first port

<vlanid> The default VLAN id for the port.
<prio> The priority ranging from 0 ς 7.

Command eth vlan default show [port]

Description Shows the default VLAN settings of the given port or all ports if no port is given

Parameter [port] The optional port where the default VLAN settings shall be
shown.

Version: 0.1 60/169

Command eth vlan verify set <port> <on|off>

Description Enables/disables the VLAN domain verification for the given port.

Parameter <port> The port as number starting from 0 for the first port
<on|off> ¶ on ς enable verification

¶ off ς disable verification

Command eth vlan verify show [port]

Description Shows the VLAN verification settings of the given port or all ports if no port is
given

Parameter [port] The optional port where the VLAN verification settings
shall be shown.

Command eth vlan discunknown set <port> <on|off>

Description Enabled/disables the discarding of frames with unknown VLAN ids.

Parameter <port> The port as number starting from 0 for the first port
<on|off> ¶ on ς enable discarding

¶ off ς disable discarding

Command eth vlan discunknown show [port]

Description Shows the unknown VLAN discarding settings of the given port or all ports if no
port is given

Parameter [port] The optional port where the VLAN discarding settings shall be
shown.

5.5.6 MAC table

The MAC table subgroup provides an interface to the MAC table settings and allows to access
specific MAC table entries.

Command eth mactab conf set <ageing|migration|discunknown|pervlan>

<on|off>

Descriptio
n

Enabled/disables the given feature of the the MAC table.

Parameter <learning|ageing|migration|discunknown|

pervlan>
The feature setting to
change:

¶ learning :
Automatic MAC
address learning

¶ ageing : MAC
address ageing for
dynamic entries

¶ migration :

Allows the migration

Version: 0.1 61/169

of MAC addresses
between ports

¶ discunknown :
Discard frames with
unknown
destination address

¶ pervlan : Learn

MAC addresses per
VLAN allowing the
same MAC address
in different VLANs

<on|off> ¶ on ς enable feature

¶ off ς disable

feature

Command eth mactab conf show

Description Shows the state of the different MAC table configuration settings.

Parameter None

Command eth mactab mac add <mac> <port>

Description Adds the given port to the port map of the given MAC address. If the MAC
address is not yet in the table, it is added as a static MAC address. Both, unicast
and multicast MAC addresses are accepted.

Parameter <mac> The MAC address where the port shall be added to. The
address is given in the format xx:xx:x x:xx:xx:xx

<port> The port as number starting from 0 for the first port.

Command eth mactab mac rem <mac> <port>

Description Removes the given port from the port map of the given MAC address. If the MAC
address does not contain any more ports after command execution, it is removed
from the MAC table. Both, unicast and multicast MAC addresses are accepted.

Parameter <mac> The MAC address where the port shall be removed from.
The address is given in the format
xx:xx:xx:xx:xx:xx

<port> The port as number starting from 0 for the first port.

Command eth mactab mac show <mac>

Description Shows the port map for the given MAC address.

Parameter <mac> The MAC address where the port map shall be shown. The
address is given in the format xx:xx:xx:xx:xx:xx

Command eth mactab mac clear <static|dynamic|all>

Description Deletes the MAC table.

Version: 0.1 62/169

Parameter <static|dynamic|all> The following part of the MAC table is cleared:

¶ static : static

¶ dynamic : dynamic

¶ all : complete

5.5.7 Denial of Service Prevention

This command group provides an interface to TX as well as broadcast and multicast rate limiting.

Command eth dos txrate set <port> <limit>

Description Sets the maximum allowed TX rate in percent.
Parameter <port> The port as number starting from 0 for the first port.

<limit> The max. allowed TX rate in percent.

Command eth dos txrate show [port]

Description Sets the maximum allowed TX rate in percent for the given port. If no port is
given, the TX rates for all ports are shown.

Parameter [port] The optional port as number starting from 0 for the first
port where the TX rate shall be shown.

Command eth dos timebase set <timebase>

Description Sets the time frame for broadcast/multicast rate limiting in ms. A timebase of 0
disables the rate limiting.

Parameter <timebase> The time base in ms.

Command eth dos timebase show

Description Shows the time frame for broadcast/multicast rate limiting in ms. A timebase of 0
means that rate limiting is disabled.

Parameter None

Command eth dos mlimit set <limit>

Description Sets the rate limiting for multicast frames. The limit is interpreted as <limit> per
<timebase>. The time base is set per eth dos timebase set command.

Parameter <limit> The limit in number of frames.

Command eth dos mlimit show

Description Shows the rate limiting for multicast frames. The limit is interpreted as <limit> per
<timebase>.

Parameter None

Command eth dos blimit set <limit>

Description Sets the rate limiting for broadcast frames. The limit is interpreted as <limit> per

Version: 0.1 63/169

<timebase>. The time base is set per eth dos timebase set command.

Parameter <limit> The limit in number of frames.

Command eth dos blimit show

Description Shows the rate limiting for broadccast frames. The limit is interpreted as <limit>
per <timebase>.

Parameter None

5.5.8 Port settings

Command eth port link show [port]

Description Shows the link state of the given port. If no port is given, link state of all ports is
shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port adstate set <port> <on|off>

Description Sets the admin state of the given port.
Parameter <port> The port as number starting from 0 for the first port.

<on|off> Admin state of the port:

¶ on : Port enabled.

¶ off : Port disabled.
Depending on the implementation, a port may still have a
link when disabled but will not transmit/receive any
frame.

Command eth port adstate show [port]

Description Shows the port admin state of the given port. If no port is given, port state of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port speed show [port]

Description Shows the port state of the given port. If no port is given, port state of all ports is
shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port duplex show [port]

Description Shows the duplex mode of the given port. If no port is given, duplex mode of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port mirror set <port> <<portmap>|<mac>>

<ida|insa|eda|inda|eport|inport>

Description Sets mirror mode of port

Version: 0.1 64/169

Parameter [port] The port as number starting from 0 for
the first port.

 <<portmap>|<mac>> Either port map or MAC address for
mirrored ports.

 <eda|esa|inda|insa|eport|inport> The port mirror mode.

¶ eda : egress destination address
(requires mac address)

¶ inda : ingress destination
address (requires mac address)

¶ esa : egress source address
(requires mac address)

¶ insa : ingress sorce address
(requires mac address)

¶ eport : egress port (requires
portmap)

¶ inport : ingress port (requires
portmap)

Command eth port mirror show [port]

Description Shows the mirror mode of the given port. If no port is given, mirror mode of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port mdi state show [port]

Description Shows the port MDI state of the given port. If no port is given, the state of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth port mdi state set <port> <default|uncrossed|crossed>

Description Set the port MDI state of the given port.

Parameter <port> The port as number starting from 0 for the
first port

<default|uncrossed|crossed> The MDI state:
¶ default: the default state
¶ uncrossed: Rx and Tx paths are

straight through connected
¶ crossed: Rx and Tx paths are

crossed

Command eth port mdi mode show [port]

Description Shows the port MDI mode of the given port. If no port is given, the mode of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Version: 0.1 65/169

Command eth port mdi mode set <port> <default|auto|manual>

Description Set the port MDI mode of the given port.
Parameter <port> The port as number starting from 0 for the first port

<default|auto|manual> The MDI mode:
¶ default: the default mode
¶ auto: the required MDI state is automatically

detected
¶ manual: the MDI state is manually set and

will not change

5.5.9 QoS Settings

Command eth qos mode set <port> <etype|mac|ip|vlan> <on|off>

Description Enables/disable the different QoS priority resolution modes for the given port. All
modes may be active.

Parameter <port> The port as number starting from 0 for the first port.
<etype|mac|ip|vlan> The priority type to use:

¶ etype : Enables Ethertype priority resolution

¶ mac: Enables MAC based priority resolution

¶ ip : Enables IP DiffServ/COS priority resolution

¶ vlan : Enables VLAN priority resolution

 <on|off> Enables/disables the mode:

¶ on : Mode enabled.

¶ off : Mode disabled.

Command eth qos mode show [port]

Description Shows the QoS priority resolution mode of the given port. If no port is given, the
mode of all ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Version: 0.1 66/169

Command eth qos defprio set <port> <defprio>

Description Sets the default priority for a frame if none of the active QoS priority resolution
modes for the given port provides a resolution.

Parameter <port> The port as number starting from 0 for the first port.
<defprio> The default priority. Valid ranges may differ depending on

the underlying hardware.

Command eth qos defprio show [port]

Description Shows the default priority of the given port. If no port is given, the priority of all
ports is shown.

Parameter [port] The port as number starting from 0 for the first port

Command eth qos vlanprio set <port> <vlanprio> <mapping>

Description Sets the VLAN priority for the given port.

Parameter <port> The port as number starting from 0 for the first port.
<vlanprio> The VLAN priority to map.
<mapping> The priority to which the VLAN priority is mapped to.

Command eth qos vlanprio show [port]

Description Shows the priority mapping of the given port. If no port is given, the mapping of
all ports is shown.

Parameter [port] The port as number starting from 0 for the first port

5.5.10 Config Manager

The cm command provides a CLI interface to the GOAL config manager. It allows the manipulation
of existing variables and is able to show the current values of variables.

Command cm set <modid> <varid> <newval>

Description Sets the value of an existing variable in the config manager.

Parameter <modid> The module id of the variable to set
<varid> The variable id of the variable to set
<newval> The new value to set. Integer values are entered as is with

ŀƴ ƻǇǘƛƻƴŀƭ ǎƛƎƴΦ {ǘǊƛƴƎ ǾŀƭǳŜǎ ōŜƎƛƴ ŀƴŘ ŜƴŘ ǿƛǘƘ ά-
character.

Command cm show [<modid> <varid>]

Description Shows the variable identified by given module and variable id or all variables if no
ids are given.

Parameter <modid> The module id of the variable to set
<varid> The variable id of the variable to set

Version: 0.1 67/169

5.5.11 Network Interface

The network interface command group provides access to general network settings e.g. settings
for the TCP/IP stack.

5.5.12 IP Settings

The ip sub command provides access to settings of the underlying TCP/IP stack.

Command net ip set <ip> <netmask> <gateway>

Description Sets the IP address, the netmask and the default gateway of the underlying TCP/IP
stack.

Parameter <ip> The new IP address in the format xxx.xxx.xxx.xxx
<netmask> The new netmask in the format xxx.xxx.xxx.xxx
<gateway> The new default gateway in the format

xxx.xxx.xxx.xxx

Command net ip show

Description Shows the current IP settings of the underlying TCP/IP stack.

Parameter None

5.6 Statistics

GOAL files:

goal_stat.[h,c]

example:

Χ\goal\appl\00410_goal\eth_stats

GOAL provides the possibility to track statistics. Primarily this is used for Ethernet to propagate
statistics and to analyse communication problems. GOAL provides the following typical ethernet
statistics for each port:

GOAL number of ethernet statistic Description
 ID Number Identifier

GOAL_ID_ETH 1 GOAL_ETH_STATS_TOTAL_DISC number of total
discarded frames

GOAL_ID_ETH 2 GOAL_ETH_STATS_TOTAL_BYTE_DISC number of total
discarded bytes

GOAL_ID_ETH 3 GOAL_ETH_STATS_TOTAL_FRAMES number of total
processed frames

Version: 0.1 68/169

GOAL number of ethernet statistic Description
 ID Number Identifier

GOAL_ID_ETH 4 GOAL_ETH_STATS_TOTAL_BYTE_FRAMES number of total
processed bytes

GOAL_ID_ETH 5 GOAL_ETH_STATS_ODISC number of discarded
outgoing frames

GOAL_ID_ETH 6 GOAL_ETH_STATS_IDISC_VLAN number of discarded
wrong or missing
VLAN-IDs

GOAL_ID_ETH 7 GOAL_ETH_STATS_IDISC_UNTAGGED number of discarded
missing VLAN tags

GOAL_ID_ETH 8 GOAL_ETH_STATS_IDISC_BLOCK number of discarded
due to blocking
mode

GOAL_ID_ETH 9 GOAL_ETH_STATS_LEARN_CNT number of learned
MAC addresses

GOAL_ID_ETH 10 GOAL_ETH_STATS_AFRAMES_RECEIVED_OK number of received
valid frames
including pause

GOAL_ID_ETH 11 GOAL_ETH_STATS_AFRAMES_CRC_ERRORS number of received
frames with CRC
errors

GOAL_ID_ETH 12 GOAL_ETH_STATS_AALIGNMENT_ERRORS number of received
frames with
alignment errors

GOAL_ID_ETH 13 GOAL_ETH_STATS_AOCTETS_TRANSM_OK number of
transmitted valid
octets

GOAL_ID_ETH 14 GOAL_ETH_STATS_ATX_PAUSE_CTRL_FRAMES number of received
valid octets

GOAL_ID_ETH 15 GOAL_ETH_STATS_ATX_PAUSE_CTRL_FRAMES number of
transmitted pause
frames

GOAL_ID_ETH 16 GOAL_ETH_STATS_ARX_PAUSE_CTRL_FRAMES number of received
pause frames

GOAL_ID_ETH 17 GOAL_ETH_STATS_IFIN_ERRORS number of received
errors

GOAL_ID_ETH 18 GOAL_ETH_STATS_IFOUT_ERRORS number of transmit
errors

GOAL_ID_ETH 19 GOAL_ETH_STATS_IFIN_UCAST_PKTS number of received
unicast frames

GOAL_ID_ETH 20 GOAL_ETH_STATS_IFIN_MCAST_PKTS number of received
multicast frames

GOAL_ID_ETH 21 GOAL_ETH_STATS_IFIN_BCAST_PKTS number of received

Version: 0.1 69/169

GOAL number of ethernet statistic Description
 ID Number Identifier

broadcast frames
GOAL_ID_ETH 22 GOAL_ETH_STATS_IFOUT_DISC number of discarded

transmitted frames

GOAL_ID_ETH 23 GOAL_ETH_STATS_IFOUT_UCASR_PKTS number of
transmitted unicast
frames

GOAL_ID_ETH 24 GOAL_ETH_STATS_IFOUT_MCAST_PKTS number of
transmitted
multicast frames

GOAL_ID_ETH 25 GOAL_ETH_STATS_IFOUT_BCAST_PKTS number of
transmitted
broadcast frames

GOAL_ID_ETH 26 GOAL_ETH_STATS_ETHERSTATS_OCTETS number of all bytes
(good and bad)

GOAL_ID_ETH 27 GOAL_ETH_STATS_ETHERSTATS_PKTS number of all frames
(good and bad)

GOAL_ID_ETH 28 GOAL_ETH_STATS_ETHERSTATS_UNDERSIZE number of frames
too short

GOAL_ID_ETH 29 GOAL_ETH_STATS_ETHERSTATS_OVERSIZE number of frame too
long

GOAL_ID_ETH 30 GOAL_ETH_STATS_ETHERSTATS_PKTS64 number of frames
with size of 64 bytes

GOAL_ID_ETH 3 GOAL_ETH_STATS_ETHERSTATS_PKTS65TO127 number of frames
with size of 65-127
bytes

GOAL_ID_ETH 32 GOAL_ETH_STATS_ETHERSTATS_PKTS128TO255 number of frames
with size of 128-255
bytes

GOAL_ID_ETH 33 GOAL_ETH_STATS_ETHERSTATS_PKTS256TO511 number of frames
with size of 256-511
bytes

GOAL_ID_ETH 34 GOAL_ETH_STATS_ETHERSTATS_PKTS512TO1023 number of frames
with size of 512-
1023 bytes

GOAL_ID_ETH 35 GOAL_ETH_STATS_ETHERSTATS_PKT1024TO1518 number of frames
with size of 1024-
1518 bytes

GOAL_ID_ETH 36 GOAL_ETH_STATS_ETHERSTATS_PKTS1519TOX number of frames
with size >= 1519
bytes

GOAL_ID_ETH 37 GOAL_ETH_STATS_ETHERSTATS_JABBERS number of jabbers

GOAL_ID_ETH 38 GOAL_ETH_STATS_ETHERSTATS_FRAGS number of

Version: 0.1 70/169

GOAL number of ethernet statistic Description
 ID Number Identifier

fragments
GOAL_ID_ETH 39 GOAL_ETH_STATS_VLAN_RECV_OK number of received

valid VLANs

GOAL_ID_ETH 40 GOAL_ETH_STATS_VLAN_TRANS_OK number of
transmitted valid
VLANs

GOAL_ID_ETH 41 GOAL_ETH_STATS_FRAMES_RETRANS number of
retransmitted
collision frames

GOAL_ID_ETH 42 GOAL_ETH_STATS_ADEFERRED number of deferred
at begin

GOAL_ID_ETH 43 GOAL_ETH_STATS_AMULTIPLE_COLL number of frames
transmitted after
multiple collisions

GOAL_ID_ETH 44 GOAL_ETH_STATS_ASINGLE_COLL number of frames
transmitted after
single collisions

GOAL_ID_ETH 45 GOAL_ETH_STATS_ALATE_COLL number of too late
collisions

GOAL_ID_ETH 46 GOAL_ETH_STATS_AEXCESS_COLL number of frames
discarded due to 16
consecutive
collisions

GOAL_ID_ETH 47 GOAL_ETH_STATS_ACARR_SENSE_ERR number of PHY
carrier sense errors

GOAL_ID_ETH 48 GOAL_ETH_STATS_IFIN_DISC number of discarded
received frames

GOAL_ID_ETH 49 GOAL_ETH_STATS_IFIN_UNKNOWN_PROTO number of received
unknown protocols

GOAL_ID_ETH 50 GOAL_ETH_STATS_SQE_ERR number of SQE test
errors

GOAL_ID_ETH 51 GOAL_ETH_STATS_MAC_TX_ERR number of internal
MAC Tx errors

GOAL_ID_ETH 52 GOAL_ETH_STATS_MAC_RX_ERR number of internal
MAC Rx errors

GOAL_ID_ETH 53 GOAL_ETH_STATS_SYMBOL_ERR number of symbol
errors

Table 4: provided ethernet statistics by GOAL

GOAL tracks statistics, but some can be overwritten using a platform specific implementation.

Version: 0.1 71/169

5.6.1 Access

Read a statistics value:

/* get received octets from port 0 */

res = goal_statValGetById (&val, GOAL_ID_ETH, GOAL_STAT_ID_ETH_IFOUTOCTETS, 0);

if (GOAL_RES_ERR(res)) {

 goal_logErr ("failed to retrieve statistics counter");

 return ;

}

Reset a statistics value:

res = goal_statResetById (GOAL_ID_ETH, GOAL_STAT_ID_ETH_IFOUTOCTETS, 0);

if (GOAL_RES_ERR(res)) {

 goal_logErr ("failed to reset statistics counter");

 return ;

}

5.6.2 Ethernet statistics

Each platform manages the support of the ethernet statistics listed in Table 4 for the ID
GOAL_ID_ETH by a bit-coded mask of the GOAL data type uint64_t. Bit 0 of the mask represents
the ethernet statistic with the GOAL number 0.
The access to the statistic values are realized about the ethernet commands:

¶ GOAL_ETH_CMD_STATS_MASK_GET: read the supported ethernet statistics from the
platform as bit-coded mask for all ethernet port

¶ GOAL_ETH_CMD_STATS_GET: read the values of all supported ethernet statistics for one
ethernet port

¶ GOAL_ETH_CMD_STATS_RST: reset ethernet statistics for ethernet ports; it is platform-
specific which statistics of one or all ethernet ports are reset

The ethernet commands are executed by function goal_ethCmd().

If the compiler-define GOAL_CONFIG_ETH_STATS_NAMES is set to 1, a short description for each
ethernet statistic is available in code by function goal_ethStatsNameGet().

example:

Χ\goal\appl\00410_goal\eth_stats

5.7 Generic GOAL instances

This GOAL core module provides functions to manage instances of GOAL core modules or/and
GOAL extension modules. Each instance is identifiable by an instance type and an instance-ID. The
instance type specifies the GOAL core module or the GOAL extension module. The instance types
ŀǊŜ ŘŜŦƛƴŜŘ ƛƴ Χ\goal\goal\goal_id.h. The instance-ID is an arbitrary number. Each instance-ID
must be used once within the same instance type.

Version: 0.1 72/169

GOAL files:

goal_inst.[h,c]

example:

not available

5.8 Locking

This GOAL core module provides functions to lock resources in the GOAL system. This module
supports two types of lock mechanism:

¶ counting semaphore, specified by the enum GOAL_LOCK_COUNT

¶ binary mutex, specified by the enum GOAL_LOCK_BINARY
The behavior for waiting on a semaphore or mutex can be configured. Active or passive waiting is
possible.
The implementation of the lock mechanisms is platform-specific. In GOAL systems with an
operating system the lock mechanisms use the appropriate services of the operating system.

The system is halted by function goal_targetHalt() in case of an error.

GOAL files:

goal_lock.[h,c]

example:

Χ\goal\appl\00410_goal\ task_lock

5.8.1 Platform API

GOAL requires the following indication function to connect the GOAL system to the appropriate
services of the operating system:

Prototype GOAL_STATUS_T goal_targetLockInit(void)

Description This indication function initializes the locking mechanism on the operating system.
This function is called in the stage GOAL_STAGE_LOCK_PRE in state
GOAL_FSA_INIT_GOAL.

Parameters None

Return values GOAL return status, see chapter 8.3

Category Mandatory

Condition None

Prototype GOAL_STATUS_T goal_targetLockShutdown(void)

Description This indication function shutdowns the locking mechanism on the operating
system. This function is called in the stage GOAL_STAGE_LOCK_PRE in state

Version: 0.1 73/169

GOAL_FSA_SHUTDOWN.

Parameters None

Return values GOAL return status, see chapter 8.3
Category Mandatory

Condition None

Prototype GOAL_STATUS_T goal_ targetLockC reate (GOAL_LOCK_TYPE_T

lockType , GOAL_ LOCK_T *pLock , uint32_t valInit ,

uint32_t valMax)

Description This indication function creates a lock on the operating system.

Parameters lockType type of the lock:

¶ GOAL_LOCK_BINARY:

¶ GOAL_LOCK_COUNT:
pLock handle for the created lock

valInit ¶ counting semaphores: initial value of the lock
Number of instances which shall be marked as already in
use, normally.

¶ binary mutex: 0

valMax ¶ counting semaphores: maximal value of the lock
Number of maximal instances which shall be use this lock,
normally.

¶ binary mutex: 1

Return values GOAL return status, see chapter 8.3

Category Mandatory
Condition None

Prototype GOAL_STATUS_T goal_targetLockDelete(GOAL_LOCK_T *pLock)

Description This indication function deletes the specified lock on the operating system.
Parameters pLock handle for the lock

Return values GOAL return status, see chapter 8.3

Category Mandatory
Condition None

Prototype GOAL_STATUS_T goal_targetLockGet(GOAL_LOCK_T *pLock,

uint32_t timeout)

Description This indication function gets a lock from the operating system.
Parameters pLock handle for the lock

Timeout behavior if it is not possible to lock the resource:
>0: time for waiting on the lock in ms
0: infinite wait

Return values GOAL return status, see chapter 8.3

Version: 0.1 74/169

Category Mandatory

Condition None

Prototype GOAL_STATUS_T goal_targetLockPut(GOAL_LOCK_T *pLock)

Description This indication function returns a lock to the operating system.
Parameters pLock handle for the lock

Return values GOAL return status, see chapter 8.3
Category Mandatory

Condition None

5.8.2 Implementation guidelines

5.8.2.1 Use a lock

1. Create a handle for the lock:

GOAL_LOCK_T * pLockHdl = NULL ;

2. Create a binary lock and mark the lock for the GOAL core module goal_lock:

goal_lockCreate (GOAL_LOCK_BINARY, &pLockHdl, 0, 1, GOAL_ID_LOCK);

3. Wait forever on a lock and set a lock:

goal_lockGet (pLockHdl, GOAL_LOCK_INFINITE);

4. Reset a lock:

goal_lockPut (pLockHdl);

5. Delete the lock:

goal_lockDelete (pLockHdl);

5.9 Logging

This GOAL core module provides functions to output data via an output channel like UART or
ethernet. The data can be divided into the following categories, named logging levels:

¶ error messages

¶ warning messages

¶ information messages

¶ debug messages
For each logging level this module provides an output function:

Version: 0.1 75/169

Logging level Output function

Error goal_logErr()

Warning goal_logWarn()
Information goal_logInfo()

Debug goal_logDbg()

 The escape sequences \n and \ r are filtered out from the before being send out through the
channel.

The output channel is configured by the compiler-defines GOAL_CONFIG_LOGGING_TARET_RAW
and GOAL_CONFIG_LOGGING_TARGET_SYSLOG.

GOAL provides generic format descriptors to output data to make printf-like format specifiers
portable compared to the architecture and compilers. The GOAL format descriptors are initialized
architecture-specific in Χ\goal\plat\arch\common\goal_arch_common.h. The following format
descriptors are available: FMT_d32, FMT_i32, FMT_u32, FMT_x32, FMT_d64, FMT_i64, FMT_u64,
FMT_x64, FMT_size_t, FMT_ptr and FMT_ptrdiff. FMT_ptr represents a pointer address.
FMT_ptrdiff represents a difference of two pointer addresses.
Example: The actual position value of data type int32_t shall be printed as information:

goal_logInfoόάŀŎǘǳŀƭ ǇƻǎƛǘƛƻƴΥ άCa¢ψƛонέ ƛƴŎέΣ όint32_t) actPosVal);

The logging functionality is available after the state GOAL_FSA_INIT_GOAL.
It is recommended only to enable logging during development as it can have a serious impact on
the runtime behavior.

GOAL files:

goal_log.[h,c]

example:

Χ\goal\appl\ task_lock

5.9.1 Configuration

The following compiler-defines are available to configure the logging:

GOAL_CONFIG_LOGGING:
0: logging is switched off for the complete GOAL system (default)
1: logging is switched on and the logging can be used by other GOAL components

GOAL_CONFIG_LOGGING_TARGET_RAW:
0: no board-specific output channel is available (default)
1: the board-specific output channel is used, most UART
 The board-specific function goal_targetMsgRaw() must be available.

Version: 0.1 76/169

GOAL_CONFIG_LOGGING_TARGET_SYSLOG:

0: no output via a ethernet channel (default)
1: output via the ethernet channel as broadcast ethernet frame, e.g. to indicate the
frame by Wireshark

5.9.2 Platform API

Prototype void goal_targetMsgRaw(const char *str, unsigned int

len)

Description This indication function transmits a raw message.
Parameters Str raw message

Len length of the raw message in bytes
Return values None

Category Optional

Condition compiler-define GOAL_CONFIG_LOGGING_TARGET_RAW must be set to 1

5.10 Message Logger

The Message Logger (LM) is a module to buffer log messages generated by any other components,
called generating components. The log messages can be processed by further components, called
processing components, see Figure 1.

Figure 13 integration of the message logger

A log message consists of a header and a parameter block. The parameter block is optional and can
include the values of up to 2 parameters in order to indicate current values or state information on

application

goal_lm

bus

Device Manager

application

ring buffer

other GOAL core

module

processing components generating components

goal_lmBufferGet()

goal_lmLog()

CM variables

Version: 0.1 77/169

processing-side. The structure of a log message is shown in Figure 14.

Figure 14: data structure of a log message

The header of the log message contains the following information:

¶ log-ID: a unique number to report a definite message (4 byte)

¶ timestamp: indicates the time in ms since the start of the device (8 byte)

¶ parameter length: length of parameter 1 and parameter 2 in the parameter block in byte (4
byte)

¶ padding length: number of padding bytes to fill up the log message (2 byte)
The generating components write the header of log messages into the ring buffer by function
goal_lmLog(). This function generates the timestamp and adds the padding bytes automatically.

The parameter block contains for each parameter the length (2 bytes) and the parameter value.
There are functions to write one parameter depending on the data type of the parameter, e.g.
goal_lmLogParamUINT16(). The Message Logger supports parameters of the LM-parameter data
types, see chapter 8.2.
The arguments CM-module-ID, text-ID and text of the function goal_lmLog() are implemented for
future.
If the ring buffer is full, the next log message, which shall be stored in the ring buffer, overwrites
the oldest log messages in the ring buffer. The log messages are stored in a platform dependent
byte order.

log message

parameter block

header

log-ID

timestamp

paramsLength

padLength

parameter 1 length

parameter 1 value

parameter 2 length

parameter 2 value

Version: 0.1 78/169

On processing-side the log-ID shall be known and can be assigned to specific properties, e.g. a
logging text and a severity class. The reduction of a unique log-ID allows a fast information transfer
with less resources. The Message Logger supports the following severity classes:

¶ GOAL_LOG_EXCEPTION

¶ GOAL_LOG_ERROR

¶ GOAL_LOG_WARNING

¶ GOAL_LOG_INFO

¶ GOAL_LOG_DEBUG
The availability of log messages in the ring buffer can be checked by function
goal_lmBufferGetCnt(). Log messages can be read from the ring buffer by function
goal_lmBufferGet() according to the FIFO-method.

Each processing component has to administrate the read pointer of the ring buffer by itself. This
allows that the same log message is interpreted by different processing components.

This module is used by the Device Manager about CM-variables.

GOAL files:

goal_lm.[h,c]

example:

not available

5.10.1 Configuration

5.10.1.1 Compiler-defines

The following compiler-defines are available to configure the Message Logger:

GOAL_LM_BUFFER_SIZE:
size of the ring buffer for the logging messages in bytes (default: 5120 byte)

5.10.1.2 CM-variables

For the configuration of the Message Logger the following CM-variables are available:

CM-Module-ID GOAL_ID_LM

Conventional log messages generated by the logging api are also stored in the logging
buffer.

Version: 0.1 79/169

CM-variable-ID 0

CM-variable name LM_CM_VAR_READBUFFER

Description Buffer for reading online logging from device
CM data type GOAL_CM_GENERIC

Size 128 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_LM

CM-variable-ID 1

CM-variable name LM_CM_VAR_CNT
Description Control word for online log access

CM data type GOAL_CM_UINT16

Size 2 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_LM

CM-variable-ID 2

CM-variable name LM_CM_VAR_ EXLOG_READBUFFER
Description Buffer for reading exception logging from device

CM data type GOAL_CM_GENERIC

Size 128 bytes
Default value from NVS or 0

CM-Module-ID GOAL_ID_LM

CM-variable-ID 3
CM-variable name LM_CM_VAR_ EXLOG_CNT

Description Control word for exception log access

CM data type GOAL_CM_UINT16

Size 2 bytes

Default value from NVS or 0

5.10.2 Implementation guidelines

5.10.2.1 Write a log message without parameters to the ring buffer

The log message is generated by the device detection module with the CM-module-ID
Dh![ψL5ψ55Φ ¢ƘŜ ƭƻƎ ƳŜǎǎŀƎŜ ά9ǊǊƻǊ ǿƘƛƭŜ ŜƴŀōƭƛƴƎ ¦5t ŎƘŀƴƴŜƭέ ƛǎ ŎƭŀǎǎƛŦƛŜŘ ŀǎ
GOAL_LOG_ERROR and assigned to log-ID 4 and text-ID 5. Because no parameter shall be
transferred, the length of parameter 1 and parameter 2 is 0.

Version: 0.1 80/169

1. write header of the log message:

goal_lmLog (GOAL_ID_DD, 4, 5, 0, 0, GOAL_LOG_ERROR, ñError while enabling UDP

channelò);

5.10.2.2 Write a log message with parameters to the ring buffer

The log message is generated by the device detection module with the CM-module-ID
Dh![ψL5ψ55Φ ¢ƘŜ ƭƻƎ ƳŜǎǎŀƎŜ ά9ǊǊƻǊ ǿƘƛƭŜ ƻǇŜƴƛƴƎ ¦5t ǎŜǊǾŜǊ ŎƘŀƴƴŜƭ ƻƴ ǇƻǊǘ Ϸмέ ƛǎ ŎƭŀǎǎƛŦƛŜŘ ŀǎ
GOAL_LOG_ERROR and assigned to log-ID 1 and text-ID 2. In error case the port number of the
UDP channel shall be reported. The port number has the data type uint32_t. The length of
parameter 1 is 4 bytes. The following function sequence is necessary:

1. write header of the log message:

goal_lmLog (GOAL_ID_DD, 1, 2, 4, 0, GOAL_LOG_ERROR, ñError while opening UDP server

channel on port $ 1ò);

2. write the parameter value:

goal_lmLogParamUINT32 ((uint32_t) DD_UDP_PORT);

3. finish the entry of the log message in the ring buffer:

goal_lmLogFinish ();

5.11 Network handling

This GOAL core module provides an interface to the application for TCP/IP connections, see Figure
15. A TCP/IP stack is required. The TCP/IP stack must be enabled by the compiler-define
GOAL_CONFIG_TCPIP_STACK = 1.

Figure 15: topology for net channels

GOAL creates the number of GOAL_CONFIG_NET_CHAN_MAX net channels during initialization

port A

port B

TCP/IP stack

port A

port B

ethernet

bus

goal_net

net channel 2 UDP

net channel 1 TCP

applicationgoal_eth

Version: 0.1 81/169

automatically for this purpose. Each net channel can be opened as one of the following network
connection types:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

¶ GOAL_NET_TCP_LISTENER represents the TCP server

¶ GOAL_NET_TCP_CLIENT

The connection between the net channels and the TCP/IP stack is addressed by the local IP
address, local netmask and local gateway address. The connection between the TCP/IP Stack to a
remote ethernet device is addressed by the remote IP address, the remote netmask and remote
gateway address. The rules for the determination of the local address are shown in Figure 16. The
local address is determined during creation of the net channels in the state GOAL_FSA_INIT
automatically. The remote address is configured by calling the function goal_netOpen().

Figure 16: determination of the local address of net channels

The connection to the application is realized by a callback function, see chapter 5.11.2. Each net
channel must be activated before data can be transmitted or received via the net channel. The
activation is done by function goal_netActivate().

start the

determination

of the local

address

valid address

via DHCP

available?

valid address

about the CM

loaded from

NVS available?

valid address loaded

from TCP/IP stack

available?

ζƎƻŀƭη

use local address

determined by DHCP

ζƎƻŀƭη

use local address from NVS

ζƎƻŀƭη

use local address loaded

from TCP/IP stack

ζƎƻŀƭη

no local address available,

set local address by

goal_netOpen()

determination of

local address

finished

noyes yes

no

yes

no

Version: 0.1 82/169

The following options are available to configure the TCP/IP stack:

¶ GOAL_NET_OPTION_NONBLOCK: socket connection between net channel and TCP/IP stack
is

0: blocking
1: non-blocking

¶ GOAL_NET_OPTION_BROADCAST:
0: no broadcast reception
1: broadcast reception supported

¶ GOAL_NET_OPTION_TTL:
set TTL value in IP-header

¶ GOAL_NET_OPTION_TOS:
set TOS-value in IP-header

¶ GOAL_NET_OPTION_MCAST_ADD:
enable the specified multicast address for the receipt of multicast packets

¶ GOAL_NET_OPTION_MCAST_DROP:
disable the specified multicast address for the receipt of multicast packets

¶ GOAL_NET_OPTION_REUSEADDR:
0: TCP/IP socket shall be not reusable
1: TCP/IP socket shall be reusable

The options can be can be changed by function goal_netSetOption(). The availability and the
default setting of the options depends on the TCP/IP stack.

GOAL files:

goal_net.[h,c], goal_net_dhcp.[h,c], goal_net_cli.c

example:

Χ\goal\appl\00410_goal\ tcp_client

5.11.1 Configuration

5.11.1.1 Compiler-defines

The following compiler-defines are available to configure the network handling:

GOAL_CONFIG_TCPIP_STACK:
0: network handling is disabled (default)
1: network handling is enabled

GOAL_CONFIG_NET_CHAN_MAX:
number of network channels (default: 4)

GOAL_CONFIG_DHCP:
0: static assignment of IP-addresses (default)

Version: 0.1 83/169

1: dynamic assignment of IP-addresses via DHCP

GOAL_CONFIG_IP_STATS:
0: output of IP-statistics switched off (default)
1: output of IP-statistics switched on

5.11.1.2 CM-variables

The following CM-variables are available to configure the network handling:

CM-Module-ID GOAL_ID_NET
CM-variable-ID 0

CM-variable name NET_CM_VAR_IP
Description IP address of first interface

CM data type GOAL_CM_IPV4

Size 4 bytes
Default value from NVS or 0

CM-Module-ID GOAL_ID_NET
CM-variable-ID 1

CM-variable name NET_CM_VAR_ NETMASK

Description netmask of first interface
CM data type GOAL_CM_IPV4

Size 4 bytes
Default value from NVS or 0

CM-Module-ID GOAL_ID_NET

CM-variable-ID 2
CM-variable name NET_CM_VAR_ GW

Description gateway of first interface

CM data type GOAL_CM_IPV4
Size 4 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET
CM-variable-ID 3

CM-variable name NET_CM_VAR_ COMMIT
Description Write any value to this CM-variable applies the IP settings

CM data type GOAL_CM_UINT8

Size 1 byte

Version: 0.1 84/169

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET

CM-variable-ID 4

CM-variable name NET_CM_VAR_ VALID
Description validity of IP address:

¶ 0: stored IP address is not valid, interface settings originate from network
stack of system

¶ 1: stored IP address is valid, will be applied to interface at start of device

CM data type GOAL_CM_UINT8

Size 1 byte

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET
CM-variable-ID 5

CM-variable name NET_CM_VAR_ DHCP_ENABLED

Description CM-variable to disable/enable DHCP:

¶ 0: DHCP disabled
¶ 1: DHCP enabled

CM data type GOAL_CM_UINT8
Size 1 byte

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET

CM-variable-ID 6

CM-variable name NET_CM_VAR_ DHCP_STATE
Description CM-variable to indicate the current state of DHCP if DHCP is enabled:

¶ 0: DHCP initialized

¶ 1: DHCP selecting server

¶ 2: DHCP requesting configuration

¶ 3: DHCP IP address bound

¶ 4: DHCP renewing configuration

¶ 5: DHCP rebinding IP address to interface

CM data type GOAL_CM_UINT8

Size 1 byte
Default value from NVS or 0

CM-Module-ID GOAL_ID_NET

CM-variable-ID 7

Version: 0.1 85/169

CM-variable name NET_CM_VAR_ DNS0

Description first DNS server of the first interface

CM data type GOAL_CM_IPV4
Size 4 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET
CM-variable-ID 8

CM-variable name NET_CM_VAR_ DNS1

Description second DNS server of the first interface
CM data type GOAL_CM_IPV4

Size 4 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_NET

CM-variable-ID 9

CM-variable name NET_CM_VAR_ HOSTNAME

Description host name of the first interface
CM data type GOAL_CM_STRING

Size 20 bytes

Default value from NVS or 0

5.11.2 Callback functions

The user of this module can specify the following callback function for each network channel:

Prototype void cbNetFunc(GOAL_NET_CB_TYPE_T cbType, struct

GOAL_NET_CHAN_T *pChan, struct GOAL_BUFFER_ T *pBuf)

Description This callback function is used for the following operations:

¶ GOAL_NET_CB_NEW_DATA: to transfer received data to the application

¶ GOAL_NET_CB_NEW_SOCKET: to inform the application, that a new
connection of a net channel to the TCP/IP stack was opened

¶ GOAL_NET_CB_CONNECTED: to inform the application, that the net
channel was activated

¶ GOAL_NET_CB_CLOSING: to inform the application, that the net channel
was closed

Parameters cbType type of operation:

¶ GOAL_NET_CB_NEW_DATA,

¶ GOAL_NET_CB_NEW_SOCKET,

¶ GOAL_NET_CB_CONNECTED,

Version: 0.1 86/169

¶ GOAL_NET_CB_CLOSING

pChan handle of the network channel
pBuf for GOAL_NET_CB_NEW_DATA: buffer with the received data

else: NULL

Return
values

none

Category optional
If a callback function is not available, specify NULL in the call of goal_netOpen().

Registration during runtime via function goal_netOpen()

5.11.3 IP statistics

GOAL provides the possibility to analyze communication problems by IP statistics. The supported IP
statistics bases on /RFC_1213/ and depend on the platform. GOAL provides the following typical IP
statistics:

GOAL number of IP statistic Description /RFC_1213/
Numbe

r
Identifier (object type)

0 GOAL_NET_IP_STATS_IPINHDRERRORS The number of input datagrams discarded
due to errors in their IP headers, including
bad checksums, version number
mismatch, other format errors, time-to-
live exceeded, errors discovered in
processing their IP options, etc.

1 GOAL_NET_IP_STATS_IPINADDRERRORS The number of input datagrams discarded
because the IP address in their IP headers
destination field was not a valid address to
be received at this entity. This count
includes invalid addresses and addresses
of unsupported classes. For entities which
are not IP gateways and therefore do not
forward datagrams, this counter includes
datagrams discarded because the
destination address was not a local
address.

2 GOAL_NET_IP_STATS_IPINUNKNOWNPROT
OS

The number of locally-addressed
datagrams received successfully but
discarded because of an unknown or
unsupported protocol.

3 GOAL_NET_IP_STATS_IPINDISCARDS The number of input IP datagrams for
which no problems were encountered to
prevent their continued processing, but

Version: 0.1 87/169

GOAL number of IP statistic Description /RFC_1213/

Numbe
r

Identifier (object type)

which were discarded. Note that this
counter does not include any datagrams
discarded while awaiting re-assembly.

4 GOAL_NET_IP_STATS_IPINDELIVERS The total number of input datagrams
successfully delivered to IP user-protocols
(including ICMP).

5 GOAL_NET_IP_STATS_IPOUTREQUESTS The total number of IP datagrams which
local IP user-protocols (including ICMP)
supplied to IP in requests for transmission.
Note that this counter does not include
any datagrams counted in
14/GOAL_NET_IP_STATS_IPFORWDATAGR
AMS.

6 GOAL_NET_IP_STATS_IPOUTDISCARDS The number of output IP datagrams for
which no problem was encountered to
prevent their transmission to their
destination, but which were discarded.
Note that this counter would include
datagrams counted in
14/GOAL_NET_IP_STATS_IPFORWDATAGR
AMS if any such packets met this discard
criterion.

7 GOAL_NET_IP_STATS_IPOUTNOROUTES The number of IP datagrams discarded
because no route could be found to
transmit them to their destination. Note
that this counter includes any packets
counted in
14/GOAL_NET_IP_STATS_IPFORWDATAGR
!a{ ǿƘƛŎƘ ƳŜŜǘ ǘƘƛǎ άƴƻ-ǊƻǳǘŜέ ŎǊƛǘŜǊƛƻƴΦ
Note that this includes any datagram
which a host cannot route because all of
its default gateways are down.

8 GOAL_NET_IP_STATS_IPREASMOKS The number of IP datagrams successfully
reassembled.

9 GOAL_NET_IP_STATS_IPREASMFAILS The number of failures detected by the IP
reassembly algorithm. Note that this is not
necessarily a count of discarded IP
fragments since some algorithms can lose
track of the number of fragments by
combining them as they are received.

10 GOAL_NET_IP_STATS_IPFRAGOKS The number of IP datagrams that have

Version: 0.1 88/169

GOAL number of IP statistic Description /RFC_1213/

Numbe
r

Identifier (object type)

been successfully fragmented at this
entity.

11 GOAL_NET_IP_STATS_IPFRAGFAILS The number of IP datagrams that have
been discarded because they needed to be
fragmented at this entity but could not be.

12 GOAL_NET_IP_STATS_IPFRAGCREATES The number of IP datagram fragments that
have been generated as a result of
fragmentation at this entity.

13 GOAL_NET_IP_STATS_IPREASMREQGDS The number of IP fragments received
which needed to be reassembled at this
entity.

14 GOAL_NET_IP_STATS_IPFORWDATAGRAMS The number of input datagrams for which
this entity was not their final IP
destination, as a result of which an
attempt was made to find a route to
forward them to that final destination. In
entities which do not act as IP gateways,
this counter will include only those packets
which were source-routed via this entity,
and the source-route option processing
was successful.

15 GOAL_NET_IP_STATS_IPINRECEIVES The total number of input datagrams
received from interfaces, including those
received in error.

16 GOAL_NET_IP_STATS_TCPACTIVEOPENS The number of times TCP connections
have made a direct transition from the
CLOSED state to the SYN-SENT state.

17 GOAL_NET_IP_STATS_TCPPASSIVEOPENS The number of times TCP connections
have made a direct transition from the
LISTEN state to the SYN-RCVD state.

18 GOAL_NET_IP_STATS_TCPATTEMPTFAILS The number of times TCP connections
have made a direct transition from either
the SYN-SENT or SYN-RCVD state to the
CLOSED state, plus the number of times
TCP connections have made a direct
transition from the SYN-RCVD state to the
LISTEN state.

19 GOAL_NET_IP_STATS_TCPESTABRESETS The number of times TCP connections
have made a direct transition from either
the ESTABLISHED or CLOSE-WAIT state to
the CLOSE state.

Version: 0.1 89/169

GOAL number of IP statistic Description /RFC_1213/

Numbe
r

Identifier (object type)

20 GOAL_NET_IP_STATS_TCPOUTSEGS The total number of segments sent,
including those on current connections but
excluding those containing only
retransmitted octets.

21 GOAL_NET_IP_STATS_TCPRETRANSSEGS The total number of segments
retransmitted. That is the number of TCP
segments transmitted containing one or
more previously transmitted.

22 GOAL_NET_IP_STATS_TCPINSEGS The total number of segments received,
including those received in error. This
count includes segments received on
currently established connections.

23 GOAL_NET_IP_STATS_TCPINERRS The total number of segments received in
error.

24 GOAL_NET_IP_STATS_TCPOUTRSTS The number of TCP segments sent
containing the RST flag.

25 GOAL_NET_IP_STATS_UDPINDATAGRAMS The total number of UDP datagrams
delivered to UDP user.

26 GOAL_NET_IP_STATS_UDPNOPORTS The total number of received UDP
datagrams for which there was no
application at the destination port.

27 GOAL_NET_IP_STATS_UDPINERRORS The number of received UDP datagrams
that could not be delivered for reasons
other than the lack of an application at the
destination port.

28 GOAL_NET_IP_STATS_UDPOUTDATAGRAMS The total number of UDP datagrams sent
from this entity.

29 GOAL_NET_IP_STATS_ICMPINMSGS The total number of ICMP messages which
the entity received. Note that this counter
includes all those counted by 30/
GOAL_NET_IP_STATS_ICMPINERRORS.

30 GOAL_NET_IP_STATS_ICMPINERRORS The number of ICMP messages which the
entity received but determined as having
ICMP-specific errors.

31 GOAL_NET_IP_STATS_ICMPINDESTUNREAC
HS

The number of ICMP Destination
Unreachable messages received.

32 GOAL_NET_IP_STATS_ICMPINTIMEEXDS The number of ICMP Time Exceeded
messages received.

33 GOAL_NET_IP_STATS_ICMPINPARMPROBS The number of ICMP Parameter Problem
messages received.

34 GOAL_NET_IP_STATS_ICMPINSRCQUENCHS The number of ICMP Source Quench

Version: 0.1 90/169

GOAL number of IP statistic Description /RFC_1213/

Numbe
r

Identifier (object type)

messages received.

35 GOAL_NET_IP_STATS_ICMPINREDIRECTS The number of ICMP Redirect messages
received.

36 GOAL_NET_IP_STATS_ICMPINECHOS The number of ICMP Echo (request)
messages received.

37 GOAL_NET_IP_STATS_ICMPINECHOREPS The number of ICMP Echo Reply messages
received.

38 GOAL_NET_IP_STATS_ICMPINTIMESTAMPS The number of ICMP Timestamp (request)
messages received.

39 GOAL_NET_IP_STATS_ICMPINTIMESTAMPR
EPS

The number of ICMP Timestamp Reply
messages received.

40 GOAL_NET_IP_STATS_ICMPINADDRMASKS The number of ICMP Address Mask
Request messages received.

41 GOAL_NET_IP_STATS_ICMPINADDRMASKR
EPS

The number of ICMP Address Mask Reply
messages received.

42 GOAL_NET_IP_STATS_ICMPOUTMSGS The total number of ICMP messages which
this entity attempted to send. Note that
this counter includes all those counted by
43/
GOAL_NET_IP_STATS_ICMPOUTERRORS.

43 GOAL_NET_IP_STATS_ICMPOUTERRORS The number of ICMP messages which this
entity did not send due to problems
discovered within ICMP such as a lack of
buffers. This value should not include
errors discovered outside the ICMP layer
such as the inability of IP zo route the
resultant datagram. In some
implementations there may be no types of
ŜǊǊƻǊ ǿƘƛŎƘ ŎƻƴǘǊƛōǳǘŜ ǘƻ ǘƘƛǎ ŎƻǳƴǘŜǊΩǎ
value.

44 GOAL_NET_IP_STATS_ICMPOUTDESTUNRE
ACHS

The number of ICMP Destination
Unreachable message sent.

45 GOAL_NET_IP_STATS_ICMPOUTTIMEEXCDS The number of ICMP Time Exceeded
messages sent.

46 GOAL_NET_IP_STATS_ICMPOUTECHOS The number of ICMP Echo (request)
messages sent.

47 GOAL_NET_IP_STATS_ICMPOUTECHOREPS The number of TCMP Echo Reply messages
sent.

48 GOAL_NET_IP_STATS_IFINOCTETS The total number of octets received on the
interface, including framing characters.

49 GOAL_NET_IP_STATS_IFINUCASTPKTS The number of subnetwork-unicast

Version: 0.1 91/169

GOAL number of IP statistic Description /RFC_1213/

Numbe
r

Identifier (object type)

packets delivered to a higher-layer
protocol.

50 GOAL_NET_IP_STATS_IFINNUCASTPKTS The number of non-unicast packets
delivered to a higher-layer protocol.

51 GOAL_NET_IP_STATS_IFINDISCARDS The number of inbound packet which were
chosen to be discarded even though no
errors had been detected to prevent their
being deliverable to a higher-layer
protocol.

52 GOAL_NET_IP_STATS_IFINERRORS The number of inbound packets that
contained errors preventing them from
being deliverable to a higher-layer
protocol.

53 GOAL_NET_IP_STATS_IFINUNKNOWNPROT
OS

The number of packets received via the
interface which were discarded because of
an unknown or unsupported protocol.

54 GOAL_NET_IP_STATS_IFOUTOCTETS The total number of octets transmitted out
of the interface, including framing
characters.

55 GOAL_NET_IP_STATS_IFOUTUCASTPKTS The total number of packets that higher-
level protocols requested be transmitted
to a subnetwork-unicast address, including
those that were discarded or not sent.

56 GOAL_NET_IP_STATS_IFOUTNUCASTPKTS The total number of packets that higher-
level protocols requested be transmitted
to a non-unicast address, including those
that were discarded or not sent.

57 GOAL_NET_IP_STATS_IFOUTDISCARDS The number of outbound packets which
were chosen to be discarded even though
no errors had been detected to prevent
their being transmitted. One possible
reason for discarding such a packet could
be to free up buffer space.

58 GOAL_NET_IP_STATS_IFOUTERRORS The number of outbound packets that
could not be transmitted because of
errors.

Table 5: provided IP statistic by GOAL

Each platform manages the support of the IP statistics listed in Table 5 by a bit-coded mask of the
GOAL data type uint64_t. Bit 0 of the mask represents the IP statistic with the GOAL number 0.
The access to the statistic values are realized about the ethernet commands:

Version: 0.1 92/169

¶ GOAL_NET_CMD_IP_STATS_MASK_GET: read the supported IP statistics from the platform
as bit-coded mask for all port

¶ GOAL_NET_CMD_IP_STATS_GET: read the values of all supported IP statistics

¶ GOAL_NET_CMD_IP_STATS_RST: reset IP statistics; it is platform-specific which statistics of
one or all ports are reset

The IP commands are executed by function goal_targetNetCmd().

5.11.4 Platform API

GOAL requires the following indication function for the handling of net channels:

Prototype uint32_t goal_t arget NetGetHandleSize (void)

Description This indication function returns the memory size, which is needed for a net
channel handle.

Parameters None

Return values size of a net channel handle in bytes

Category Mandatory

Prototype GOAL_STATUS_T goal_t argetNetRecv (GOAL_BUFFER_T **ppBuf)

Description This indication function is called everytime a TCP/IP packet is received.

Parameters ppBuf GOAL ethernet buffer containing the received packet
Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNet IpSet(uint32_t addrIp,

uint32_t addrMask, uint32_t addrGw, GOAL_BOOL_T

flgTemp)

Description This indication function allows to set the IP configuration for the TCP/IP stack. This
function is called in state GOAL_FSA_INIT normally.

Parameters addrIp local IP address

addrMask local subnet mask
addrGw local gateway address

flgTemp kind of the IP configuration

¶ GOAL_TRUE: There are no CM-variables available to store
the IP configuration. The IP configuration is handled
temporary.

¶ GOAL_FALSE: There are CM-variables available to store
the IP configuration. The IP configuration is handled
about CM-variables.

Return values GOAL return status, see chapter 8.3

Category Mandatory

Version: 0.1 93/169

Prototype GOAL_STATUS_T goal_targetNetIpGet(uint32_t *pA ddrIp,

uint32_t *pA ddrMask, uint32_t *pA ddrGw, GOAL_BOOL_T

*pF lgTemp)

Description This indication function returns the current IP configuration used by the TCP/IP
stack.

Parameters pAddrIp current local IP address

pAddrMask current local subnet mask
pAddrGw current local gateway address

pFlgTemp current kind of the IP configuration

¶ GOAL_TRUE: There are no CM-variables available to store
the IP configuration. The IP configuration is handled
temporary.

¶ GOAL_FALSE: There are CM-variables available to store
the IP configuration. The IP configuration is handled
about CM-variables.

Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNet Open(void **ppTargetHandle,

GOAL_NET_TYPE_T type, GOAL_NET_ADDR_T *pAddr)

Description This indication function allows to open a net channel.

Parameters ppTargetHandle handle for the net channel

type connection type:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

¶ GOAL_NET_TCP_LISTENER

¶ GOAL_NET_TCP_CLIENT

pAddr local and maybe remote address of the net channel

Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetReopen(char *pTgtHandle,

GOAL_NET_TYPE_T type , GOAL_NET_ADDR_T *pAddr)

Description This indication function allows to reopen the net channel specified by the handle.

Parameters pTgtHandle handle for the net channel
type connection type:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

¶ GOAL_NET_TCP_LISTENER

Version: 0.1 94/169

¶ GOAL_NET_TCP_CLIENT

pAddr local and maybe remote address of the net channel
Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetClose(void *pTargetHandle,

GOAL_NET_TYPE_T type)

Description This indication function allows to close the net channel specified by the handle.

Parameters pTargetHandle handle for the net channel

type connection type:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

¶ GOAL_NET_TCP_LISTENER

¶ GOAL_NET_TCP_CLIENT

Return values GOAL return status, see chapter 8.3
Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetActivate(void

*pTargetHandle)

Description This indication function allows to activate the net channel specified by the handle.

Parameters pTargetHandle handle for the net channel
Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetDeactivate(void

*pTargetHandle)

Description This indication function allows to deactivate the net channel specified by the
handle.

Parameters pTargetHandle handle for the net channel

Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetSend(void *pTargetHandle,

GOAL_NET_TYPE_T type, GOAL_NET_ADDR_T *pAddr,

GOAL_BUFFER_T *pBuf)

Description This indication function transmit data via the net channel to the TCP/IP stack.
Parameters pTargetHandle handle for the net channel

type connection type:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

Version: 0.1 95/169

¶ GOAL_NET_TCP_LISTENER

¶ GOAL_NET_TCP_CLIENT

pAddr local and maybe remote address of the net channel
pBuf buffer with the packet to transmit

Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetOptSet(void *pTargetHandle,

GOAL_NET_TYPE_T type, GOAL_NET_OPTION_T option, void

*pValue)

Description This indication function allows to change one property of the net channel.
Parameters pTargetHandle handle for the net channel

type connection type:

¶ GOAL_NET_UDP_SERVER

¶ GOAL_NET_UDP_CLIENT

¶ GOAL_NET_TCP_LISTENER

¶ GOAL_NET_TCP_CLIENT

option property of the net channel:

¶ GOAL_NET_OPTION_NONBLOCK: set socket to non-
blocking

¶ GOAL_NET_OPTION_BROADCAST

¶ GOAL_NET_OPTION_TTL

¶ GOAL_NET_OPTION_TOS

¶ GOAL_NET_OPTION_MCAST_IF

¶ GOAL_NET_OPTION_MCAST_ADD

¶ GOAL_NET_OPTION_MCAST_DROP

¶ GOAL_NET_OPTION_REUSEADDR
pValue value of the selected option

Return values GOAL return status, see chapter 8.3

Category Mandatory

Prototype void goal_targetNetPoll(void)

Description This indication function is called in the state GOAL_FSA_OPERATION execute loop-
controlled actions.

Parameters None

Return values None
Category Mandatory

Prototype GOAL_BOOL_T goal_targetNetAvail(void)

Description This indication function checks if new data was received.

Version: 0.1 96/169

Parameters None

Return values state of received data:

¶ GOAL_TRUE: received data available

¶ GOAL_FALSE: no data received

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNet Cmd(GOAL_NET_CMD_T id,

GOAL_BOOL_T wrFlag, void *pArg)

Description This indication function allows to execute a net command.
Parameters id command identifier

wrFlag access direction

¶ GOAL_TRUE: write argument

¶ GOAL_FALSE: read argument

pArg argument to the net command

Return values GOAL return status, see chapter 8.3

Category mandatory

5.11.5 Command line interface

Command net ip set <ip> <netmask> <gateway>

Description Sets the remote IP-address, the netmask and the default gateway of the
underlying TCP/IP stack.

Parameter <ip> The new IP address in the format xxx.xxx.xxx.xxx
<netmask> The new netmask in the format xxx.xxx.xxx.xxx
<gateway> The new default gateway in the format

xxx.xxx.xxx.xxx

Command net ip show

Description Prints the remote address consisting of the IP-address, netmask and gateway
address of the underlying TCP/IP stack to the command line interface.

Parameter none

5.11.6 Implementation guidelines

5.11.6.1 Configure, open and activate a net channel

1. All net channels are created automatically in the state GOAL_FSA_INIT_GOAL and the local

addresses are determined.

Version: 0.1 97/169

2. Set the local IP address in state GOAL_FSA_INIT:

uint32_t ipAddr;

uint32_t netmask;

uint32_t gatewayAddr;

ipAddr = GOAL_NET_IPV4(192 , 168 , 0, 100);

netmask = GOAL_NET_IPV4(255 , 255 , 255 , 0);

gatewayAddr = GOAL_NET_IPV4(0, 0, 0, 0);

goal_netIpSet (ipAddr, netmask, gatewayAddr);

3. Create a callback function to handle actions on the net channel application-specific:

void applNetCallback (GOAL_NET_CB_TYPE_T cbType, struct GOAL_NET_CHAN_T * pChan,

struct GOAL_BUFFER_T * pBuf) {

 é

}

4. Create a handle for the net channel:

GOAL_NET_CHAN_T * pNetChanHdl;

5. Create the address information of the net channel:

GOAL_NET_ADDR_T addr;

addr.localIp = ipAddr;

addr.localPort = 1234 ;

addr.remoteIP = GOAL_NET_IPV4(192 , 168 , 0, 10);

addr.remotePort = 1234 ;

6. Open a net channel by function goal_netOpen() and specify the remote address and a callback

function:

goal_netOpen (&pNetChanHdl, &addr, GOAL_NET_UDP_CLIENT, applNetCallback);

7. Maybe change a property of the net channel by function goal_netSetOption(), e.g. configure

the net channel as non-blocking:

uint32_t optVal:

optVal = 1;

goal_netSetOption (pNetChanHdl, GOAL_NET_OPTION_NONBLOCK, &optVal);

8. Activate the net channel by function goal_netActivate():

goal_netActivate (pNetChanHdl);

5.11.6.2 Send data

Use a buffer managed about a GOAL queue to transmit data.

Version: 0.1 98/169

1. Create a handle for the queue:

GOAL_QUEUE_T * pQueueHdl;

2. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each

buffer is 20 bytes. The queue has to be created by function goal_queueInit() in the state
GOAL_FSA_INIT.

goal_queueInit (&pQueueHdl, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T * pBuf;

4. Take an uninitialized buffer from the queue:

goal_queueGetElem (pQueueHdl, &pBuf);

5. Initialize the buffer and mark the buffer as used:

pBuf - >usage = GOAL_ID_QUEUE;

pBuf - >relCb = NULL; /* no callback function shall be called */

pBuf - >pQueue = pQueueHdl; /* return the buffer to the same queue */

pBuf - >flags = GOAL_QUEUE_FLG_USED;

6. Write a value of 4 bytes to the buffer:

uint32_t value = 0x11223344 ;

pBuf - >ptrData = (uint8_t *) &value;

pBuf - >dataLen = 4;

7. Send data by function goal_netSend() and receive data via the specified callback function:

goal_netSend (pNetChanHdl, pBuf);

8. Close and deactivate the net channel by function goal_netClose():

goal_netCose (pNetChanHdl);

5.12 Queue buffer pool

This GOAL core module provides functions to manage a pool of buffers organized in queues. Single
buffers can be taken from top of the queue. The buffers can be read, written or cleared by the
application. After processing the buffers are returned at the end of the queue. The buffer handling
of a queue is organized as FIFO. Accesses to the queue and the buffers is protected by the GOAL
locking mechanism.

Version: 0.1 99/169

Figure 17: queue buffer handling

It is possible to store buffers to other queues. This method shall only be used in exceptional cases
and shall be used very careful.

The function using the queue mechanism is responsible to manage the buffers and for the buffer
content. Each buffer has a header for management purposes, described in chapter 5.12.2.

This module provides the following functions to manage the queue:

Function in goal_queue Description

queue

buffer_1

buffer_n

process

process

take buffer from queue

return buffer in queue

Version: 0.1 100/169

Function in goal_queue Description

goal_queueInit() create a queue with buffers
This function allocates the memory of a specified number
of buffers with the same size and assigns the buffers to the
queue.
It is also possible to create an empty queue without
buffers and to add buffers in the state
GOAL_FSA_OPERATION. In this case the memory for the
buffers must be allocated in the state GOAL_FSA_INIT by
another process.

goal_queuePoolBufsReq() Initially create free buffers for application specific usage
This function has to be called by each user of a pool. It
tells the queue buffer pool how many buffers the user
requires. There are two paremeters regarding the number
of buffers. First parameter defines the number of buffers
that are required at any given time. Seconds parameter
defines the number of buffers, that may be required
temporarily additionally. Those temporarily buffers can be
shared between multiple applications.

This function is required if the system pools are used
(goal_queueGetNewBuf).

goal_queueSetReleaseCallback() specify a callback function buffer-related, which is called
by one of the functions goal_queueRelease*()

goal_queueGetNewBuf() take a buffer from the queue and initialize buffer
The following buffer properties are initialized, see chapter
5.12.2:
flags: GOAL_QUEUE_FLG_USED
dataLen: 0
netPort: GOAL_ETH_PORT_HOST
relCb: NULL
pEthBufHdlr: NULL

goal_queueGetElem() take a buffer from the queue
The buffer can be uninitialized or can contain valid data.

goal_queueAddElem() return a buffer into the queue
The content of the buffer remains unchanged.

goal_queueReleaseBuf()
goal_queueReleaseBufToOrigQueue()
goal_queueReleaseBufToNewQueue()

It is only allowed to release a buffer if:

¶ the release was allowed for this buffer: see chapter
5.12.3/ GOAL_QUEUE_FLG_NO_RELEASE

¶ content of the buffer is not in transmission: see
chapter 5.12.3/ GOAL_QUEUE_FLG_TX

If no release callback is specified by function
goal_queueSetReleaseCallback(), the buffer is returned in

Version: 0.1 101/169

Function in goal_queue Description

the desired queue according to the called function:

¶ goal_queueReleaseBuf(): return buffer into the queue
specified in the buffer property pQueue

¶ goal_ queueReleaseBufToOrigQueue(): return buffer
into the queue, which has created the buffer during
goal_queueInit()

¶ goal_queueReleaseBufToNewQueue(): append buffer
to the specified queue in the function call

The flag GOAL_QUEUE_FLG_USED is cleared.

If a release callback is specified by function
goal_queueSetReleaseCallback(), the callback function is
called and is responsible to return the buffer into a queue.
The content of the buffer remains unchanged.

GOAL files:

goal_queue.[h,c]

example:

not available

5.12.1 Callback functions

GOAL allows to install a callback function to release a buffer to a queue application-specific. The
name of the callback function is application-specific.

Prototype GOAL_STATUS_T cbQueueRelFunc(struct GOAL_BUFFER_T *pBuf,

void *pArg)

Description This callback function allows to do actions by the application before the buffer is
return to the specified queue. If the actions are finished, the callback function has
to call one of the functions goal_queueReleaseBuf() or
goal_queueReleaseBufToNewQueue() or goal_queueReleaseBufToOrigQueue() to
release the buffer.

Parameters pBuf buffer, which shall be returned

pArg specific arguments used by the callback function

Return
values

GOAL return status, see chapter 8.3

Category optional
If a callback function is not available, GOAL returns the buffer to the specified
queue.

Registration during runtime about function goal_queueSetReleaseCallback()

Version: 0.1 102/169

5.12.2 Buffer header

The usage of each buffer can be controlled separately from the queue management by the user of
the queue buffer pool. There are properties available for the buffer management represented by
the structure GOAL_BUFFER_T in code. The structure GOAL_BUFFER_T contains public and private
properties. The user of the queue buffer pool shall only change the public properties listed in Table
6.
Some properties are also changed by the queue management during initialization and re-
initialization of buffers, see Table 6.

Public property of
GOAL_BUFFER_T

Description

dataLen length of the data in bytes, i.e. used bytes of the buffer
This value is cleared by function goal_queueGetNewBuf().

flags bit-coded flags to control special buffer tasks, see chapter
5.12.3

netPort port number to the ethernet network,
usable if the GOAL queue mechanism is used for sending and
receiving ethernet frames

etherType type field of the received ethernet frame according to IEEE-
802.3

relCb callback function called by goal_queueRelease*()
The application can specify a callback function by function
goal_queueSetReleaseCallback(). The callback function is
deleted by the function goal_queueGetNewBuf().

tsSec timestamp in s of the received ethernet frame
The availability of a timestamp depends on the platform.

tsNsec timestamp in ns oft he received ethernet frame
The availability of a timestamp depends on the platform.

Table 6: public elements of queue buffers

5.12.3 Buffer flags

Each buffer of a queue buffer pool can be controlled by the following flags:

Flag of GOAL_BUFFER_T/flags Description

GOAL_QUEUE_FLG_USED 0: buffer is free
1: buffer is used
goal_queueGetNewBuf() set this bit. goal_queueRelease*()
reset this bit.

GOAL_QUEUE_FLG_NO_RELEASE 0: buffer can be released
1: buffer must not be released

Version: 0.1 103/169

Flag of GOAL_BUFFER_T/flags Description

GOAL_QUEUE_FLG_TX 0: no transmission is active, buffer can be released
1: buffer content is still transmitted, buffer cannot be released

GOAL_QUEUE_FLG_VLAN This bit indicates if the received ethernet frame uses the VLAN
protocol:
0: ethernet frame uses another protocol
1: VLAN is used
This setting corresponds with the property etherType of
GOAL_BUFFER_T.

GOAL_QUEUE_FLG_TIMESTAMP This bit allows to activate the sending a ethernet frame with
time stamp:
0: no timestamp is transmitted
1: timestamp is transmitted
This property must be supported by the platform.
Table 7: control flags of queue buffers

5.12.4 Internal queue usage

GOAL uses 3 queues for internal purposes with different memory sizes: small, medium and big.
The number and size of the data buffers can be configured and adapted to the user system.

The number and the size of each internal queue can be configured by a CM-variable in the CM-
module with the module-ID GOAL_ID_QUEUE. If no values for these CM-variables are stored in the
nonvolatile memory, GOAL uses default values. The memory configuration shall only be changed in
a GOAL project if memory optimizations are required.

CM-variable-ID 0

CM-variable name SMALLBUFSIZE

Description size of a small memory buffer

CM data type GOAL_CM_INT16

Size 2 bytes
Default value from NVS or GOAL_QUEUE_SMALL_SIZE: 0 byte

CM-variable-ID 1

CM-variable name SMALLBUFNUM
Description amount of small memory buffers

CM data type GOAL_CM_INT16

Size 2 bytes
Default value from NVS or GOAL_QUEUE_SMALL_NUM: 0 byte

CM-variable-ID 2

Version: 0.1 104/169

CM-variable name MEDBUFSIZE

Description size of a medium memory buffer

CM data type GOAL_CM_INT16
Size 2 bytes

Default value from NVS or GOAL_QUEUE_MED_SIZE: 0 byte

CM-variable-ID 3
CM-variable name MEDBUFNUM

Description amount of medium memory buffers

CM data type GOAL_CM_INT16
Size 2 bytes

Default value from NVS or GOAL_QUEUE_MED_NUM: 0 byte

CM-variable-ID 4
CM-variable name BIGBUFSIZE

Description size of a medium memory buffer

CM data type GOAL_CM_INT16

Size 2 bytes
Default value from NVS or GOAL_QUEUE_BIG_SIZE: GOAL_NETBUF_SIZE for ethernet or

TCP/IP usage, else 0

CM-variable-ID 5
CM-variable name BIGBUFNUM

Description amount of medium memory buffers

CM data type GOAL_CM_INT16
Size 2 bytes

Default value from NVS or GOAL_QUEUE_BIG_NUM: GOAL_CONFIG_BUF_NUM for
ethernet or TCP/IP usage, else 0

5.12.5 Implementation guidelines

5.12.5.1 Get an uninitialized buffer from the queue and add the buffer to the queue

1. Create a handle for the queue:

GOAL_QUEUE_T * pQueueHdl;

2. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each

buffer is 20 bytes. The queue has to be created by function goal_queueInit() in the state
GOAL_FSA_INIT.

Version: 0.1 105/169

goal_qu eueInit (&pQueueHdl, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T * pBuf;

4. Take an uninitialized buffer from the queue:

goal_queueGetElem (pQueueHdl, &pBuf);

5. Initialize the buffer and mark the buffer as used:

pBuf - >dataLen = 0;

pBuf - >usage = GOAL_ID_QUEUE;

pBuf - >relCb = NULL; /* no callback function shall be called */

pBuf - >pQueue = pQueueHdl; /* return the buffer to the same queue */

pBuf - >flags = GOAL_QUEUE_FLG_USED;

6. Use the buffer application-specific.

7. Return the buffer to the same queue:

goal_queueAddElem (pQueueHdl, pBuf);

5.12.5.2 Get an initialized buffer from the queue and release the buffer without a callback
function

1. Create a handle for the queue:

GOAL_QUEUE_T * pQueueHdl;

2. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each

buffer is 20 bytes. The queue has to be created by function goal_queueInit() in the state
GOAL_FSA_INIT.

goal_queueInit (&pQueueHdl, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T * pBuf;

4. Take an initialized buffer from the queue. The same queue is specified as return queue. No

callback function is specified.

goal_queueGetNewBuf (&pBuf, pQueueHdl, GOAL_ID_QUEUE);

5. Use the buffer application-specific.

Version: 0.1 106/169

6. Release the buffer to the same queue:

goal_que ueReleaseBuf (&pBuf);

5.12.5.3 Get an initialized buffer from the queue and release the buffer with a callback function

1. Create an application-specific callback function to release the buffer:

GOAL_STATUS_T cbQueueRelFunc (struct GOAL_BUFFER_T * pBuf, void * pArg) {

 é

 goal_queueReleaseBuf(&pBuf);

}

2. Create a handle for the queue:

GOAL_QUEUE_T * pQueueHdl;

3. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each

buffer is 20 bytes. The queue has to be created by function goal_queueInit() in the state
GOAL_FSA_INIT.

goal_queueInit (&pQueueHdl, 10, 10, 20);

4. Create a handle for a buffer:

GOAL_BUFFER_T * pBuf;

5. Take an initialized buffer from the queue. The same queue is specified as return queue. No

callback function is specified.

goal_queueGetNewBuf (&pBuf, pQueueHdl, GOAL_ID_QUEUE);

6. Register the callback function without arguments for the buffer:

goal_queueSetReleaseCallback (pBuf, cbQueueRelFunc, NULL);

7. Use the buffer application-specific.

8. Return the buffer into the queue by function goal_queueReleaseBuf(). The function

goal_queueReleaseBuf() calls the callback function and the buffer is returned to the queue.

goal_queueReleaseBuf (&pBuf);

5.13 Ring buffer

This GOAL core module provides functions for ring buffers. Data of different byte length can be
stored in or loaded from the ring buffer. The access to the ring buffer is protected by the GOAL
locking mechanism.

Version: 0.1 107/169

A fast writing is supported. This means the GOAL locking mechanism is only applied once. The
following sequence allows the fast writing:
1. start writing by function goal_rbPut() and set the parameter flgLockKeep to GOAL_TRUE, the

ring buffer remains locked
2. continue writing for all data by function goal_rbPutFast()
3. release the lock by function goal_rbPutFastFinish()

GOAL files:

goal_rb.[h,c]

example:

..\goal\appl\00410_goal\ rb

5.14 Task abstraction layer

This GOAL core module connects the specific operating system to other GOAL components via a
generic abstraction layer. The task abstraction layer allows to create and shutdown a task, to
configure the task priority and to handle the state machine for the task and requires indication
functions containing the special operating system functions. The indication functions are described
in chapter 5.14.2.

 Task priorities are generalized to the following categories:

¶ GOAL_TASK_PRIO_LOWEST

¶ GOAL_TASK_PRIO_MEDIUM

¶ GOAL_TASK_PRIO_HIGHEST

GOAL files:

goal_task.[h,c]

example:

Χ\goal\appl\00410_goal\ task

5.14.1 Configuration

The following compiler-defines are available to configure the task abstraction layer:

GOAL_CONFIG_TASK:
0: task abstraction layer is disabled (default)
1: task abstraction layer is enabled

Version: 0.1 108/169

5.14.2 Platform API

GOAL requires the following indication function to connect a specific operating system to the task
abstraction layer:

Prototype GOAL_STATUS_T goal_tgtTaskCreate(GOAL_TASK_T *pTask)

Description This indication function allows to create a task specified by the task-handle.

Parameters pTask handle for the task
Return values GOAL return status, see chapter 8.3

Category mandatory

Prototype GOAL_STATUS_T goal_tgtTaskStart(GOAL_TASK_T *pTask)

Description This indication function allows to start the task specified by the task-handle.

Parameters pTask handle for the task

Return values GOAL return status, see chapter 8.3
Category mandatory

Prototype GOAL_STATUS_T goal_tgtTaskExit(void)

Description This indication function allows to shutdown the current task.

Parameters none

Return values GOAL return status, see chapter 8.3
Category mandatory

Prototype GOAL_STATUS_T goal_tgtTas kMsSleep (uint32_t msReq,

uint32_t *pMsRem)

Description This indication function allows to put the current task to sleep.
Parameters msReq time in ms to sleep

pMsRem returns the remaining time in ms if sleep was interrupted and
this function is available on the specific operating system

Return values GOAL return status, see chapter 8.3

Category mandatory

Prototype GOAL_STATUS_T goal_tgtTaskTestSelf(GOAL_TASK_T *pTask)

Description This indication function allows to check if the ID of the current task matches to
the task-handle.

Parameters pTask handle for the task

Return values GOAL return status, see chapter 8.3

Category mandatory

Version: 0.1 109/169

Prototype GOAL_STATUS_T goal_tgtTaskPrioSet(GOAL_TASK_T *pTask,

uint32_t prio)

Description This indication function allows to configure the priority of the specified task.

Parameters pTask handle for the task
Prio desired priority of the task:

¶ GOAL_TASK_PRIO_LOWEST

¶ GOAL_TASK_PRIO_MEDIUM

¶ GOAL_TASK_PRIO_HIGHEST

Return values GOAL return status, see chapter 8.3

Category mandatory

Prototype GOAL_STATUS_T goal_tgtTaskSuspend(GOAL_TASK_T *pTas k)

Description This indication function allows to suspend the execution of the task specified by
the task-handle.

Parameters pTask handle for the task

Return values GOAL return status, see chapter 8.3

Category mandatory

Prototype GOAL_STATUS_T goal_tgtTaskResume(GOAL_TASK_T *pTask)

Description This indication function allows to resume the execution of the task specified by
the task-handle.

Parameters pTask handle for the task

Return values GOAL return status, see chapter 8.3
Category mandatory

5.15 Timer

This GOAL core module provides functionalities for:

¶ hard timers with an operating system (Figure 18),

¶ hard timers without an operating system (Figure 19) and

¶ soft timers (Figure 20).
Hard timers are high prioritized and handled interrupt-controlled or operating system-specific. Soft
timers are low prioritized and handled loop-controlled. Both kinds of timer base on platform-
specific timers. The value range of the timers depends on the platform-specific timer
configuration. The standard GOAL system requires a minimal time period of 1 ms.
The accesses to the GOAL timers are protected by the GOAL locking mechanism.

Version: 0.1 110/169

Figure 18: typical case for hard timer with operating system

Figure 19: typical case for hard timer without operating system

Figure 20: soft timer handling

The timers can be used as:

¶ single shot timer or

¶ periodic timer

timer handling of

the operating

system

timer task
timer callback

function

stop timer callback

function

re-start timer

stop timer commanded

timer ISRtimer IRQ goal_timerRun()
timer callback

function

stop timer callback

function

stop timer commanded

re-start timer

goal_loop() goal_timerRun()
timer callback

function

stop timer callback

function

re-start timer

stop timer commanded

Version: 0.1 111/169

The timer type can be configured by function goal_timerSetup().

GOAL files:

goal_timer.[h,c], goal_timer_cli.c

example:

not available

5.15.1 Callback functions

There are the following callback functions to connect the timer with other functionality:

Prototype void cbTimerFunc(void *pArg)

Description This callback function is always called if the current time stamp is captured.

Parameter pArg specific arguments used by the callback function

Return
values

none

Category Mandatory

Registration during runtime via function goal_timerSetup()

Prototype void cbStopTimerFunc(void *pArg)

Description This function is called once if the timer is stopped.
Parameter pArg specific arguments used by the callback function

Return
values

none

Category optional
If a callback function is not available, GOAL deletes the timer.

Registration during runtime via function goal_timerStopCb()

5.15.2 Platform API

GOAL requires the following indication function to manage a platform-specific timer as base for
GOAL timers:

Prototype GOAL_STATUS_T goal_targetTimerInit(void)

Description This indication function initializes a platform-specific timer and is called in stage
GOAL_STAGE_TIMER_PRE in the state GOAL_FSA_INIT_GOAL.

Parameters none

Return values GOAL return status, see chapter 8.3

Category mandatory

Version: 0.1 112/169

Condition none

Prototype GOAL_STATUS_T goal_target TimerCreate (GOAL_TIMER_T

*pTmr)

Description This indication function creates a platform-specific timer for a GOAL hard timer.

Parameters pTmr handle for the GOAL hard timer

Return values GOAL return status, see chapter 8.3

Category mandatory for GOAL hard timers

Condition none

Prototype GOAL_STATUS_T goal_targetTimerDelete(GOAL_TIMER_T

*pTmr)

Description This indication function deletes a platform-specific timer for a GOAL hard timer.

Parameters pTmr handle for the GOAL hard timer
Return values GOAL return status, see chapter 8.3

Category mandatory for GOAL hard timers
Condition none

Prototype GOAL_STATUS_T goal_targetTimer Start (GOAL_TIMER_T *pTmr)

Description This indication function starts a platform-specific timer for a GOAL hard timer.
Parameters pTmr handle for the GOAL hard timer

Return values GOAL return status, see chapter 8.3

Category mandatory for GOAL hard timers
Condition none

Prototype GOAL_STATUS_T goal_targetTimerStop(GOAL_TIMER_T *pTmr)

Description This indication function stops a platform-specific timer for a GOAL hard timer.
Parameters pTmr handle for the GOAL hard timer

Return values GOAL return status, see chapter 8.3
Category mandatory for GOAL hard timers

Condition none

5.15.3 Command line interface

Command time current

Description Prints the current timestamp of the GOAL system to the command line interface.

Parameter none

Version: 0.1 113/169

5.15.4 Implementation guidelines

5.15.4.1 Use a periodic soft timer and start the timer immediately

1. Create a handle for the timer:

GOAL_TIMER_T * pSoftTimer;

2. Create a soft timer of low priority in state GOAL_FSA_INIT:

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);

3. The soft timer shall be triggered every 1000 ms periodically and shall be started immediately.

The timer is configured as follow:

goal_timerSetup (pSoftTimer, GOAL_TIMER_PERIODIC, 1000 , cbTimerFunc, NULL,

GOAL_TRUE);

4. The callback function is called if the timer is expired again and again.

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);

goal_timerSetup (pSoftTimer, GOAL_TIMER_PERIODIC, 1000 , cbTimerFunc, NULL,

GOAL_TRUE);

5. Stop the timer without calling a callback function after it is expired the next time:

goal_timerStop (pSoftTimer);

6. Delete the timer:

goal_timerDelete (&pSoftTimer);

5.15.4.2 Use a single soft timer and start the timer in the application

1. Create a handle for the timer:

GOAL_TIMER_T * pSoftTimer;

2. Create a soft timer of low priority in state GOAL_FSA_INIT:

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);

3. The soft timer shall be triggered only once after 1000 ms and shall be started by the

application. The timer is configured as follow:

Version: 0.1 114/169

goal_timerSetup (pSoftTimer, GOAL_TIMER_SINGLE, 1000 , cbTimerFunc, NULL,

GOAL_FALSE);

4. Start the timer in the application:

goal_timerStart (pSoftTimer);

5. Stop the timer without calling a callback function:

goal_timerStop (pSoftTimer);

6. Delete the timer:

goal_timerDelete (&pSoftTimer);

5.15.4.3 Stop hard timer with callback function

1. Create a handle for the timer:

GOAL_TIMER_T * pHardTimer;

2. Create a hard timer of high priority in state GOAL_FSA_INIT:

goal_timerCreate (&pHardTimer, GOAL_TIMER_HIGH);

3. The hard timer shall be triggered every 1000 ms periodically and shall be started immediately.

The timer is configured as follow:

goal_timerSetup (pHardTimer, GOAL_TIMER_PE RIODIC, 1000 , cbTimerFunc, NULL,

GOAL_TRUE);

4. The callback function is called if the timer is expired again and again.

5. Stop the timer with calling a callback function:

goal_timerStopCb (pHardTimer, cbStopTimerFunc, NULL);

6. Delete the timer:

goal_timerDelete(&pHardTimer);

5.16 Tracing

This GOAL core module provides macros for tracing data via a configurable interface. Helpful for
getting additional information about the system on debugging or setting reference pins for e.g.
timing analysis. Tracing data is disabled by default.

Macro GOAL_TGT_TRACE8(_chan, _data)

Version: 0.1 115/169

Description tracing an 8-bit value

Parameters _chan output channel

_data data value
Category Optional

Condition Compiler-define GOAL_CONFIG_TGT_TRACE must be set to 1 and a tracing
interface has to be enabled.

Macro GOAL_TGT_TRACE16 (_chan, _data)
Description tracing a 16-bit value

Parameters _chan output channel

_data data value
Category Optional

Condition Compiler-define GOAL_CONFIG_TGT_TRACE must be set to 1 and a tracing
interface has to be enabled.

Macro GOAL_TGT_TRACE32(_chan, _data)
Description tracing a 32-bit value

Parameters _chan output channel

_data data value

Category Optional
Condition Compiler-define GOAL_CONFIG_TGT_TRACE must be set to 1 and a tracing

interface has to be enabled.

Macro GOAL_TGT_TRACE_BIT_SET(_chan, _bit)

Description
Setting a single bit on the tracing data. Keeping the other bits unchanged. This
feature is available for tracing via pin only.

Parameters _chan output channel

_bit bit position
Category Optional

Condition Compiler-define GOAL_CONFIG_TGT_TRACE and
GOAL_CONFIG_TGT_TRACE_PIN must be set to 1.

Macro GOAL_TGT_TRACE_BIT_CLR(_chan, _bit)

Description
Clearing a single bit on the tracing data. Keeping the other bits unchanged. This
feature is available for tracing via pin only.

Parameters _chan output channel

_bit bit position

Category Optional
Condition Compiler-define GOAL_CONFIG_TGT_TRACE and

GOAL_CONFIG_TGT_TRACE_PIN must be set to 1.

Version: 0.1 116/169

5.16.1 Tracing via ITM

The Instrumentation Trace Macrocell (ITM) is a special ARM feature providing a tracing interface
for output data via debugger.
Handling single data bits by GOAL_TGT_TRACE_BIT_SET or GOAL_TGT_TRACE_BIT_CLR is not
implemented at this version.

5.16.2 Tracing via pin

Outputs the data on pins. The number and choice of pins is board specific and may not be available
on all systems.

Please verify, that the configured tracing pins are free to use before enabling this GOAL
feature.

There are no different output channels, so the _chan argument at the macros will not be
considered.

5.16.3 Configuration

The following defines enable the tracing module and its interface.

GOAL_CONFIG_TGT_TRACE
0: tracing is switched off for the complete GOAL system (default)
1: tracing is switched on for the complete GOAL system

GOAL_CONFIG_TGT_TRACE_PIN

0: tracing the data via board specific pins is switched off (default)
1: tracing the data via board specific pins is switched on. The number and choice of
pins is configured the board. Please read section 5.16.2 Tracing via pin before
enabling this feature.

GOAL_CONFIG_TGT_TRACE_ITM:

0: tracing the data via ITM is switched off (default)
1: tracing the data via ITM is switched on.

GOAL_CONFIG_TGT_TRACE_ITM_WITHOUT_PC:

0: tracing the data via ITM with no additional information about the program
counter (default)
1: tracing the data via ITM next to the program counter when tracing

5.17 Utility functions

Version: 0.1 117/169

This GOAL core module provides utility functions for the GOAL system for:

¶ the CRC calculation according to the Fletcher-32 algorithm

¶ the generation of random values

GOAL files:

goal_util.[h,c]

Version: 0.1 118/169

6 GOAL media (goal_media)

The directory goal_media contains:

¶ media adapters: generic driver interfaces

¶ media interfaces: generic interfaces between media adapters and higher layers

One source and one header files exist for each GOAL media module. Only the sources for the
necessary GOAL media modules shall be integrated in the compiler-project of the GOAL system.
The registration is described in chapter 4.2.2. The functions are described in detail in the GOAL
Reference Manual.
Figure 21 demonstrates the easy exchange of drivers.

Figure 21: media adapter for SPI

6.1 Nonvolatile storage

GOAL provides a media adapter and media interface for the nonvolatile storage usable for program
downloads and uploads by a bootloader or for the nonvolatile storage of configuration data. The
nonvolatile storage media allows:

¶ to write data to the nonvolatile memory,

¶ to read data from the nonvolatile memory and

¶ to erase the nonvolatile memory.

6.1.1 NVS media interface

higher layer

MA-SPI

DRV-SPI RIN32M3

CSI 0

DRV-SPI RIN32M3

CSI1

higher layer

MA-SPI

DRV-SPI Synergy S7

SPI channel 0

DRV-SPI Synergy S7

SPI channel 1

write to

1st MA-ID
write to

1st MA-ID

write to

2nd MA_ID

write to RIN32M3 CSI1 write to S7 SPI chan 0

write to

2nd MA-ID

write to RIN32M3 CSI0
write to S7 SPI chan 1

Version: 0.1 119/169

The media adapter is registered to the media interface by function goal_miNvsReg(). The resource
άb±{ ƳŜŘƛŀ ƛƴǘŜǊŦŀŎŜέ Ƴǳǎǘ ōŜ ŀƭƭƻŎŀǘŜŘ ōȅ ŦǳƴŎǘƛƻƴ ƎƻŀƭψƳƛbǾǎ!ƭƭƻŎόύΦ ¢ƘŜ ƳŜŘƛŀ ƛƴǘŜǊŦŀŎŜ ƛǎ
freed by function goal_miNvsFree().

The media interface allows to manage single memory ranges, called regions. Therewith it is
possible to assign different memory ranges to various processes and to control the access to the
nonvolatile memory process-specific. Each region is identified by an ID, called MI-NVS-REGION-ID,
unique. This ID can be specified application-specific. But each ID must only exist once. During
registration a unique handle is created for each MI-NVS-REGION-ID. Each region has to be
registered to the media interface for nonvolatile storage by higher layers in the state
GOAL_FSA_INIT. A region has the following properties:

Property of NVS region Description

offset start address of the memory region, value range: uint32_t

length length of the memory region in bytes, value range: uint32_t

strName name of the file for the nonvolatile storage about the file system for
each memory region, strName is a zero-terminated string of the length
of GOAL_MI_REGION_NAME_LENGTH in bytes (default: 255 byte)

mode storage mode:

¶ GOAL_MI_NVS_REGION_MODE_COMPLETE: load/save the
complete memory region

¶ GOAL_MI_NVS_REGION_MODE_STREAM: load/save single data
within the memory region, data is addressable about an additional
offset

¶ GOAL_MI_NVS_REGION_MODE_BUFFERED: load/save to this
region is handled through a memory buffer. Writing to the physical
medium is decoupled by sequentially writing elements.

access access right at the region:

¶ GOAL_MI_NVS_REGION_ACCESS_READ: region is only readable

¶ GOAL_MI_NVS_REGION_ACCESS_WRITE: region is writable and
readable

Table 8: properties of NVS regions

6.1.1.1 Implementation guidelines

6.1.1.1.1 Registration of a memory region

1. Specify a region and define a MI-NVS-REGION-ID:

#define GOAL_ID_MI_NVS_REGION_CONFIG_DATA 2

2. Create a MA-handle:

GOAL_MA_NVS_T *pMaNvs;

3. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter
by itself.

Version: 0.1 120/169

4. Create a MI-handle:

GOAL_MI_NVS_T *pMiNvsHdl;

5. Register the media interface:
goal_miNvsReg(&pMiNvsHdl);

6. Allocate the NVS service:
goal_miNvsAlloc(pMiNvsHdl);

7. Create a MI-NVS-REGION-handle:
GOAL_MI_NVS_REGION_T *pRegio n;

8. Register and configure the memory region: The memory range starts at address 0x0001FFF and
has a length of 0x100 byte. The region shall complete. Configurtion data shall be read and
written.

 goal_miNvsRegRegion(&pRegion, pMiNvsHdl, pMaNvsHdl, 0x0001FFF , 0x00000100 ,

 ñconfig dataò,

 GOAL_ID_MI_NVS_REGION_CONFIG_DATA);

 /* set mode */

 goal_miNvsSetMode(pRegion, GOAL_MI_NVS_REGION_MODE_COMPLETE);

 /* set access rights */

 goal_miNvsSetAccess(pRegion, GOAL_MI_NVS_REGION_ACCESS_WRITE);

}

6.1.1.1.2 Write data to nonvolatile memory

1. Load MI-NVS-REGION-handle of the memory region with the ID

GOAL_ID_MI_NVS_REGION_CONFIG_DATA:
GOAL_MI_NVS_REGION_T *pRegion;

goal_miNvsRegionGetById(&pRegion, GOAL_ID_MI_NVS_REGION_CONFIG_DATA);

2. Erase the nonvolatile memory region:
goal_miNvsErase(pRegion);

3. Write data of size bytes to nonvolatile memory region:
goal_miNvsWrite(pRegion, (uint8_t *) pData,0, size);

6.1.1.1.3 Read data from nonvolatile memory

1. Load MI-NVS-REGION-handle of the memory region with the ID

GOAL_ID_MI_NVS_REGION_CONFIG_DATA:
GOAL_MI_NVS_REGION_T *pRegion;

goal_miNvsRegionGetById(&pRegion, GOAL_ID_MI_NVS_REGION_CONFIG_DATA);

2. Read data from nonvolatile memory:
goal_miNvsRead(&pRegion, (uint8_t *) pData, 0, size);

Version: 0.1 121/169

6.1.2 NVS media adapter

The selected NVS driver registers itself to the NVS media adapter.

6.1.2.1 Implementation guidelines

These implementation guidelines refer to the case, that no NVS media interface is used.

6.1.2.1.1 Write data to nonvolatile memory

1. Create a MA-handle:

GOAL_MA_NVS_T *pMaNvsHdl ;

2. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter

by itself.

3. Create a NVS description:
GOAL_MA_NVS_DESC_T desc = {

 .strName = Ăconfig datañ,

 .fCompleteAccess = GOAL_TRUE}

4. Erase 0x100 bytes in the nonvolatile memory from start address 0x0001FFF:

goal_maNvsErase (pMaNvsHdl, &desc, 0x0001FFF, 0x100);

5. Write 0x100 bytes from the buffer pData to the nonvolatile memory on start address
0x0001FFF:

goal_maNvsWrite(pMaNvsHdl, &des c, 0x0001FFF, (uint8_t *) pData, 0x100);

6.1.2.1.2 Read data from nonvolatile memory

1. Create a MA-handle:

GOAL_MA_NVS_T *pMaNvsHdl;

2. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter

by itself.

3. Create a NVS description:
GOAL_MA_NVS_DESC_T desc = {

 .strName = Ăconfig datañ,

 .fCompleteAccess = GOAL_TRUE}

4. Read 0x100 bytes from the start address 0x0001FFFF in the nonvolatile memory and store the

data in pData:
goal_maNvsRead(pMaNvsHdl, &desc, 0x0001FFFF, (uint8_t *)pData, 0x100);

Version: 0.1 122/169

6.2 LED

GOAL provides a media adapter for the controlling of LEDs. Standardized communication protocols
often need status LEDs. The application can also use the LED media adapter to control LEDs
application-specific. The media adapter for LEDs allows to handle

¶ single LEDS and

¶ groups of LEDs

The used hardware resources for the controlling of LEDs are encapsulated in the LED driver and
depends on the platform. Details are described in the suitable GOAL Platform Manual. It is possible
to control the LEDs via GPIOs or about a serial bus as IIC.

The media adapter provides the following functionality:

¶ open/close a media adapter for a single LED or a group of LEDs,

¶ get/set the state of a single LED,

¶ get/set the state of a group of LEDs.
The get-functions require, that the current LED state is readable from the platform.

The connection between the LED driver and the LED media adapter is identified by a MA-ID
unique. The determination of the MA-ID is described in the suitable GOAL Platform Manual. The
most LED drivers uses a MA-ID created by the application. The application has to assign single LEDs
and/or groups of LEDs to MA-IDs during the platform initialization in the state GOAL_FSA_INIT.

A group of LEDs can consist of maximal 32 LEDs. The mask and state value have data type uint32_t
and are bit-coded. Each LED in the LED group shall use the same bit position in the mask and state
value. The interpretation of the bit values of the LED states is platform-specific. Maybe the
application has to consider the polarity of the LEDs. The bit values for the mask are defined as
follow:

Bit value Meaning for LED group mask

0 LED is ignored and remains unchanged

1 LED is changed according to the desired state bit
Table 9: mask bit coding for groups of LEDs

6.2.1 Implementation guidelines

6.2.1.1 Switch on/off and get the state of a single LED

1. Define a MA-ID for a single LED:

#define GOAL_MA_LED_APPL_SINGLE_LED 1

2. Call the LED driver function to initialize the LED hardware resource and to register the LED

driver for a single LED to the LED media adapter in state GOAL_FSA_INIT.

Version: 0.1 123/169

3. Open a media adapter instance and get the MA-SPI handle:

GOAL_MA_LED_T *pMaLedHdl; /*MA - LED handle */

goal_maLedOpen(GOAL_MA_LED_APPL_SINGLE_LED, &pMaLedHdl);

4. Switch on the LED:

GOAL_MA_LED_STATE_T state = GOAL_MA_LED_STATE_ON;

goal_maLedSet(pMaLedHdl, &state);

5. Get the current state of the LED:

goal_maLedGet(pMaLedHdl , &state);

6. Close the media adapter instance:

goal_maLedClose(pMaLedHdl);

6.2.1.2 Switch on/off and get the state of a LED group

A group of 32 LEDs shall be controlled.

1. Define a MA-ID for a group of LEDs:

#define GOAL_MA_LED_APPL_GROUP_LED 2

2. Call the LED driver function to initialize the hardware resource for all LEDs and to register the

LED driver for a group of LEDs to the LED media adapter in state GOAL_FSA_INIT.

3. Open a media adapter instance and get the MA-SPI handle:
GOAL_MA_LED_T *pMaLedHdl; /*MA - LED handle */

goal_maLedOpen(GOAL_MA_LED_APPL_GROUP_LED, &pMaLedHdl);

4. Switch on the LEDs assigned to bit 31-24, do not change the LEDs assigned to bit 23-16, switch
off LEDs assigned to bit 15-0:

uint32_t mask = 0xFF00FFFF;

uint32_t state = 0xFF000000;

goal_maLedGroupSet(pMaLedHdl, &mask, &state);

5. Get the current state of all LEDs in the LED group:
goal_maLedGroupGet(pMaLedHdl, &state);

6. Close the media adapter instance:

goal_maLedClose(pMaLedHdl);

6.3 SPI

GOAL provides a media adapter for the SPI communication. The media adapter provides the
following functionality:

¶ open/close a media adapter for a SPI-channel

¶ get/set a general SPI-configuration

Version: 0.1 124/169

¶ read data from the SPI-bus

¶ write data to the SPI-bus

¶ write and read data to/from the SPI-bus

¶ report events to higher layers

GOAL defines the following general SPI configuration settings:

SPI configuration
setting

according to
GOAL_MA_SPI_CONF_T

Description

type type of the SPI communication:

¶ GOAL_MA_SPI_TYPE_MASTER,

¶ GOAL_MA_SPI_TYPE_SLAVE

mode combination of clock polarity and phase as SPI mode:

¶ GOAL_MA_SPI_MODE_0,

¶ GOAL_MA_SPI_MODE_1,

¶ GOAL_MA_SPI_MODE_2,

¶ GOAL_MA_SPI_MODE_3
bitrate SPI baudrate in Hz

unitsize size of transferred data must be a multiple of unitsize:

¶ GOAL_MA_SPI_UNITWIDTH_8BIT,

¶ GOAL_MA_SPI_UNITWIDTH_16BIT,

¶ GOAL_MA_SPI_UNITWIDTH_32BIT
The minimal size must be equal to the data transfer length of the SPI
controller at least.

bitorder bit order of the transferred data via the SPI bus:

¶ GOAL_MA_SPI_BITORDER_MSB,

¶ GOAL_MA_SPI_BITORDER_LSB
Table 10: general SPI configuration settings

The SPI-configuration can be set by function goal_maSpiConfigSet(). The current SPI-configuration
can be read by function goal_maSpiConfigGet(). The support of the SPI configuration settings
depends on the SPI driver and the SPI controller. Details are described in the suitable GOAL
Platform Manual.

SPI events are handled event-driven about an application-specific callback function. The supported
events depend on the SPI driver and the availability on the SPI controller. GOAL provides the
following events:

Event number
according to GOAL_MA_SPI_EVENT_T

Description

GOAL_MA_SPI_EVENT_TRANSFER_COMPLETE The SPI controller reports, that the data

Version: 0.1 125/169

Event number
according to GOAL_MA_SPI_EVENT_T

Description

transfer is completed.
GOAL_MA_SPI_EVENT_TRANSFER_ABORTED The SPI controller reports, that the data

transfer is aborted.

GOAL_MA_SPI_EVENT_MODE_FAULT The SPI controller reports an error during
configuration of the platform-specific SPI
mode.

GOAL_MA_SPI_EVENT_READ_OVERFLOW The SP controller reports a read overflow.

GOAL_MA_SPI_EVENT_ERR_PARITY The SPI controller on the platform repots a
parity error.

GOAL_MA_SPI_EVENT_ERR_DATA_CONSISTENCY The SPI controller on the platform supports a
data consistency check. The data consistency
check is active and reports an error.

GOAL_MA_SPI_EVENT_ERR_OVERFLOW The SPI controller works in a buffered mode
and reports an overflow of the buffers.

GOAL_MA_SPI_EVENT_ERR_OVERRUN The SPI controller reports an overrun during
reception of data.

GOAL_MA_SPI_EVENT_ERR_BUF_OVERRUN The internal SPI message buffer in the driver
overflows.

GOAL_MA_SPI_EVENT_ERR_FRAMING The SPI controller reports a framing error.

GOAL_MA_SPI_EVENT_MODE_UNDERRUN The SPI controller reports an underrun, if it
works as SPI slave and no transmission data are
prepared and a serial transfer was initiated by
the SPI master.

Table 11: general SPI events

The connection between the SPI driver and the SPI media adapter is identified by a MA-ID unique.
The determination of the MA-ID is described in the suitable GOAL Platform Manual. The most SPI
drivers determine the MA-ID by itself.

6.3.1 Callback functions

Prototype GOAL_STATUS_T cbMaSpiEvent (struct GOAL_MA_SPI_T

*pMaSpiHdl, GOAL_MA_SPI_EVENT_T event, void *pArg)

Description This callback function is called if an SPI event was occurred in the SPI driver to
inform higher layers.

Parameters pMaSpiHdl handle of the media adapter

event number of the occurred event, see Table 11
pArg specific arguments used by the callback function

Return
values

GOAL return status, see chapter 8.3

Version: 0.1 126/169

Category mandatory

Registration during runtime about function goal_maSpiOpen()

6.3.2 Implementation guidelines

6.3.2.1 Read and write data via the SPI-bus

1. Call the SPI driver function to initialize the SI controller and to register the SPI driver to the SPI

media adapter in state GOAL_FSA_INIT. During this guideline GOAL_MA_ID_SPI is used to mark
the MA-ID. During the registration a unique MA-SPI handle is created.

2. Implement a callback function to handle SPI events:

GOAL_STATUS_T cbAppl MaSpiEvent(struct GOAL_MA_SPI_T *pMaSpiHdl, GOAL_MA_SPI_EVENT_T

event, void *pArg) {

 é

}

3. Open the media adapter, specify the callback function to handle SPI events and get the MA-SPI

handle:

GOAL_MA_SPI_T *pMaSpiHdl;

goal_maSpiOpen(GOL_MA_SPI_ID, &pMaSpiHdl, cbApplMaSpiEvent , NULL);

4. Write 4 byte stored in pData to the SPI-bus:

goal_maSpiWrite(pMaSpiHdl, (uint8_t *)pData, 4);

5. Read data from the SPI-bus and store the data to pData:

uint16_t len; /* length of read d ata in bytes */

goal_maSpiRead(pMaSpiHdl, (uint8_t *)pData, &len);

6. Write 4 byte stored in pWriteData to the SPI-bus and read data from SPI-bus and store the read

data to pReadData at the same time:

unt16_t len; /* length of data to write as input parame ter and length of read data

as output in bytes */

len = 4;

goal_maSpiWriteRead(pMaSpiHdl, pWriteData, pReadData, &len);

6.3.2.2 Configure the SPI interface

1. Get the current general SPI configuration of an opened MA:

GOAL_MA_SPI_CONF_T spiConfig;

goal_maSpiC onfigGet(pMaSpiHdl, &spiConfig);

Version: 0.1 127/169

2. Specify SPI mode 0:

spiConfig.mode = GOAL_MA_SPI_MODE_0;

3. Set SPI configuration:

goal_maSpiConfigSet(pMaSpiHdl, &spiConfig);

6.3.2.3 Handle SPI events

1. Call the SPI driver function to initialize the SI controller and to register the SPI driver to the SPI

media adapter in state GOAL_FSA_INIT. During this guideline GOAL_MA_ID_SPI is used to mark
the MA-ID. During the registration a unique MA-SPI handle is created.

2. Implement a callback function to handle SPI events:

GOAL_STATUS_T cbApplMaSpiEvent(struct GOAL_MA_SPI_T *pMaSpiHdl, GOAL_MA_SPI_EVENT_T

event, void *pArg) {

 if (GOAL_MA_SPI_ EVENT_ERR_OVERRUN == event) {

 é

 }

 else if (GOAL_MA_SPI_EVENT_ERR_PARITY == event) {

 é

 }

 else {

 /* handle unknown events application - specific */

 }

}

3. Open the media adapter, specify the callback function to handle SPI events and get the MA-SPI

handle:

GOAL_MA_SPI_T *pMaSpiHdl;

goal_maSpiOpen(GOL_MA_SPI_ID, &pMaSpiHdl, cbApplMa SpiEvent, NULL);

4. If a SPI event occurs, the callback function cbApplMaSpiEvent is called.

6.4 TLS

GOAL provides a functionality for encryption and authentication of TCP packets on the base of the
Transport Layer Security (TLS) protocol /TLS_RFC_5246/. The functionality of TLS requires:

¶ a TLS library,

¶ a GOAL driver for the integration of the TLS library into the GOAL system and

¶ a GOAL media adapter for TLS in order to use a generic interface for TLS in the application.
GOAL allows to implement various libraries for cryptographic and transport layer security
capabilities. The GOAL TLS media adapter makes it possible to exchange the TLS library with less
effort. The TLS functionality is embedded into the GOAL core module for the network handling.

Version: 0.1 128/169

The TLS functionality comprises:

¶ encryption/decryption of TCP packets and

¶ the authentication by a X509-certificate.

Figure 22: integration of TLS

The authentication is realized by a X509-certificate. The application can specify an own private key
and an own X509-certificate by function goal_maTlsOpen(). The private key must have a length
between 1024 bit and 2048 bit. If no X509-certificate is specified a default certificate is taken. The
default certificate is port-specific.

The GOAL TLS media adapter allows:

¶ to open/close a GOAL TLS channel and

¶ to get information from the X509-certificate about the certification authority, the
organization providing the web-server and the validity period

The encryption and decryption are made by the TLS library internally.

example:

Χ\goal\appl\00410_goal\ tls\ *

6.4.1 Configuration

The following compiler-defines are available to configure TLS:

GOAL_TLS:
0: TLS is disabled (default)
1: TLS is enabled

6.4.2 mbed TLS library

GOAL supports the open source library mbed TLS. The following sources must be added to the
compiler-project:

goal_net

applicationTLSgoal_ethethernet bus

encrypted data

decrypted data

net
GOAL net

channelGOAL eth channel

GOAL net

channel (TLS)

Version: 0.1 129/169

source location

mbed TLS library Χ\goal\ext\mbedtls*

GOAL driver for the mbed TLS library Χ\goal\plat\drv\ tls\mbedtls

The GOAL driver for the mbed TLS library provides the following function for the registration to the
GOAL TLS media adapter:

Prototype GOAL_STATUS_T goal_tlsMbedtlsInit(GOAL_MA_TLS_T

**ppTlsHdl, unsigned int maId)

Description This function registers the GOAL driver for the mbed TLS library, i.e. the driver
functions for initialization, opening a TLS channel and getting information from
X509v3-certificate are made known in the GOAL TLS media adapter.

Parameters ppTlsHdl handle for the TLS instance
maId MA-ID for the TLS instance

Return
values

GOAL return status, see chapter 8.3

Calling in state GOAL_FSA_INIT_GOAL, stage GOAL_STAGE_TARGET_PRE
(normally during the board initialization, see
goal_target_board.c/goal_targetBoardInit())

The application has to specify a MA-ID. There is no driver-specific rule for the construction of the
MA-ID.

The execution of the algorithm for encryption/decryption needs some time and is processed in an
own task to allow, that the algorithm can be interrupted by functions with higher priority. This
method requires an operating system.

The function goal_maTlsInit() installs the initialization function of the GOAL TLS driver in the
staging table. The initialization function of the GOAL TLS driver is called by GOAL in state
GOAL_FSA_INIT_GOAL in stage GOAL_STAGE_MODULES.

The opening function of the GOAL TLS driver is executed by function goal_maTlsOpen(). The
application has to call the function goal_maTlsOpen() in the state GOAL_FSA_INIT_SETUP to
initialize and to open the channels.

The function for getting information from the X509-certificate the GOAL TLS driver function is
mapped to the function goal_maTlsReadInfo(). The function goal_maTlsReadInfo() is called by the
application in the state GOAL_FSA_OPERATION.

6.4.3 Implementation guidelines

6.4.3.1 Initialize TLS

Version: 0.1 130/169

This example uses the mbed TLS library.
1. Define a MA-ID.

#define APPL_MA_TLS_ID 1

2. Integrate the initialization of the GOAL TLS media adapter in the stage GOAL_STAGE_MODULES

in application-specific function appl_init().

GOAL_STATUS_T appl_init (void) {

 goal_maTlsInit(APPL_MA_TLS_ID);

}

3. Create a handle for the TLS instance.

GOAL_MA_TLS_T *pTlsHdl;

4. Execute the specific function to register the GOAL driver for the selected TLS library to the

GOAL TLS media adapter. Normally this function is called during the initialization of the board
in state GOAL_FSA_INIT_GOAL in stage GOAL_STAGE_TARGET_PRE.

goal_tlsMbedtlsInit(&pTlsHdl, APPL_MA_TLS_ID);

5. Create a GOAL net channel for the output of the GOAL TLS media adapter.

GOAL_NET_CHAN_T pNetChanHdl;

GOAL_NET_ADDR_T netChanAddr;

GOAL_MEMSET(&netChanAddr, 0, sizeof(GOAL_NET_ADDR_T);

addr.localPort = 443 ;

goal_ netOpen(&pNet ChanHdl, &netChanAddr, GOAL_NET_TCP_LISTENER, NULL);

6. Configure the GOAL net channel as non-blocking.

uint32_t optVal = 1;

goal_netSetOption(pNet ChanHdl, GOAL_NET_OPTION_NONBLOCK, &optVal);

7. Get the handle for the TLS channel determined by the MA-ID and open the TLS channel.

GOAL_NET_CHAN_T pTlsChanHdl;

goal_maTlsGetById(&pTlsHdl, APPL_MA_TLS_ID);

goal_maTlsOpen(pTlsHdl, NULL, &pTlsChanHdl, pNetChanHdl);

8. Connect the GOAL net channel (TLS) to the GOAL net channel and specify a callback function to

handle packets from the TCP client.

goal_netOpenTunnel(NULL, pTls ChanHdl, applTlsClearDataCb, NULL, NULL) ;

9. Create a callback function to handle packets from the TCP client, see chapter 5.11.2 function

cbNetFunc().

void applTlsClearDataCb(GOAL_NET_CB_TYPE_T cbType, GOAL_NET_CHAN_T *pChan, struct

Version: 0.1 131/169

GOAL_BUFFER_T *pBuf) {

é

}

6.4.3.2 Use a TLS channel

1. TCP/IP packets are transmitted and received encrypted. Only valid TCP/IP packages pass the TLS
module.

2. Information from the certificate can be required.

uint8_t certInfo[128];

goal_maTlsReadInfo(pTlsHdl, GOAL_CERTINFO_CA_CN, certInfo, 128);

6.5 CMFS

CMFS is a media interface working on top of the NVS media interface. It requires 2 serparate NVS
regions for storing CM variables. Despite the plain CM implementation, which stores the whole CM
variable store as a binary blob in flash, CMFS only writes modifications to the NVS region. Thereby
the NVS region is sequientially written, thus a time consuming erase of the NVS region is not
required. However if the NVS region is nearly fully written, the current state of variables is
transferred to the secondary NVS region, where all continuing write operations take place.

This CMFS has some advantages over the plan CM implementation:

- NVS write operations can be performed much faster
- Data loss during reset while NVS is written can be omitted

To achive this, more NVS storage space needs to be reserved.

6.5.1 Integration of CMFS

Following except from goal_target_board.c shows integration of CMFS.

#include <goal_media/goal_mi_cmfs.h>

static GOAL_MI_NVS_REGION_LIST_T region_list [] = {

 { /* CMFS Storage Region 1 */

 .posStart = 0x01FC0000 ,

 .length = 0x00020000 , /* 128k kByte */

 .strName = "goal_cmfs_nvs1.bin" ,

 .id = GOAL_ID_MI_NVS_REGION_CMFS1,

 .mode = GOAL_MI_NVS_REGION_MODE_STREAM,

 .access = GOAL_MI_NVS_REGION_ACCESS_WRITE

 },

 { /* CMFS Storage Region 2 */

 .posStart = 0x01FE0000 ,

When CMFS is enabled, the NVS region with ID
GOAL_ID_MI_NVS_REGION_CMCONFIG is not required anymore.

Version: 0.1 132/169

 .length = 0x00020000 , /* 128k kByte */

 .strName = "goal_cmfs_nvs2.bin" ,

 .id = GOAL_ID_MI_NVS_REGION_CMFS2,

 .mode = GOAL_MI_NVS_REGION_MODE_STREAM,

 .access = GOAL_MI_NVS_REGION_ACCESS_WRITE

 }

};

/*** ***************************/

/** Board init

 *

 * Low level board initialization.

 *

 * @return GOAL_OK - success

 * @return GOAL_ERR_BOARD_INIT - error initializing board

 */

GOAL_STATUS_T goal_targetBoardInit (

 void

)

{

 GOAL_STATUS_T res = GOAL_OK; /* result */

 GOAL_MI_CMFS_T * pMiCmfs = NULL; /* CMFS handle */

 GOAL_MI_NVS_T * pMiNvs; /* NVS MI handle */

 /* register NVS MI with regions */

 if (GOAL_RES_OK(res)) {

 /* register a new nvs MI */

 res = goal_miNvsReg (&pMiNvs, GOAL_ID_MA_NVS_EEPROM_ETHERCAT,

eeprom_region_list, ARRAY_ELEMENTS(eeprom_region_list));

 }

 /* register CMFS */

 if (GOAL_RES_OK(res)) {

 res = goal_miCmfsReg (&pMiCmfs, 0);

 }

 /* register first region to CMFS */

 if (GOAL_RES_OK(res)) {

 res = goal_miCmfsRegRegion (pMiCmfs, GOAL_ID_MI_NVS_REGION_CMFS1);

 }

 /* register second region to CMFS */

 if (GOAL_RES_OK(res)) {

 res = goal_miCmfsRegRegion (pMiCmfs, GOAL_ID_MI_NVS_REGION_CMFS2);

 }

 return res;
}

In order to utilize CMFS, the following configuration option must be enabled.

 GOAL_CONFIG_MEDIA_MI_CMFS:
 0: CMFS is not utilized (default)
 1: CMFS is utilized

This configuration option and the required files are added when the following feature is enabled in
the Makefile, when using the GOAL build system:

CONFIG_MAKE_FEAT_MEDIA_MI_CMFS = 1

Version: 0.1 133/169

7 GOAL extension modules (protos)

Different kinds of GOAL extension modules can be divided:

¶ libraries for communication profiles provided by port GmbH

¶ more complex function blocks

7.1 Device Detection (DD)

The Device Detection represents a public interface to read and write CM-variables by other
external components or remote devices. It is projected only for development and initial
configuration purposes. During normal operation the Device Detection shall be disabled. The
ǎƻǳǊŎŜ ŎƻŘŜ ƛǎ ƭƻŎŀǘŜŘ ƛƴ ǘƘŜ ŘƛǊŜŎǘƻǊȅ Χ\goal\protos\dd.

The Device Manager tool provides a graphical user interface to read and write CM-variables by a
host computer using the Device Detection. This chapter describes a GOAL device used as
counterpart to the Device Manager tool.

The Device Detection works according to the producer/consumer model, i.e. a DD-request of the
DD-producer is received by one or more DD-consumers and each DD-consumer transmits a DD-
response. Each DD-request must be answered by one or more DD-responses.

The data transfer between the DD-producer and DD-consumers is realized via a TCP/IP connection
using the UDP protocol. All UDP datagrams are transmitted as broadcast packets to be
independent on the IP configuration.
The data in the UDP datagram contains a DD-packet, which is coded according to the Device
Detection protocol. The Device Detection protocol allows:

¶ to build groups of devices via a DD-customer-ID,

¶ to assign DD-requests and DD-responses to unique devices via the MAC address and

¶ to assign DD-requests to DD-responses.

Each DD-consumer can be assigned to a group by a DD-customer-ID. The DD-packet involves the
DD-customer-ID of the group, which shall receive the DD-packet. The DD-customer-ID allows a
filtering of the received DD-packets. The DD-customer-ID can be configured about the CM-variable
DD_CM_VAR_CUSTOMERID. On the local device the CM-variable DD_CM_VAR_CUSTOMERID can
be set by function goal_ddCfgCustomerID().
The DD-customer-ID 0 disables the filtering of the received DD-packets. A DD-consumer with the
DD-customer-ID 0 accepts all DD-packets. A DD-packet with the DD-customer-ID 0 is received from
all DD-consumers.

A symbolic name can be assigned to each device usable for graphical user interfaces. The remote
device can set the symbolic name by the CM-Variable DD_CM_VAR_MODULENAME. On the local
device the CM-variable DD_CM_VAR_MODULENAME can be set by function
goal_ddCfgModuleName().

Version: 0.1 134/169

GOAL initializes the Device Detection automatically in the state GOAL_FSA_INIT if the Device
Detection is enabled by the compiler-define GOAL_DD.

7.1.1 Configuration

7.1.1.1 Compiler-defines

The following compiler-defines are available to configure the Device Detection:

GOAL_DD:
0: Device Detection is disabled (default)
1: Device Detection is enabled

7.1.1.2 CM-variables

The following CM-variables are available to configure the Device Detection:

CM-Module-ID DD_CM_MOD_ID
CM-variable-ID 0

CM-variable name DD_CM_VAR_MODULENAME
Description name of the local device, usable by tools for symbolic names

This CM-variable can be set by function goal_ddCfgModuleName().

CM data type GOAL_CM_STRING

Size 20 bytes

Default value from NVS or 0

CM-Module-ID DD_CM_MOD_ID

CM-variable-ID 1

CM-variable name DD_CM_VAR_CUSTOMERID
Description DD-customer-ID of the local device

This CM-variable can be set by function goal_ddCfgCustomerID().

CM data type GOAL_CM_UINT32
Size 4 bytes

Default value from NVS or 0

7.1.2 Implementation guide

7.1.2.1 Configure the local device

Version: 0.1 135/169

The local device shall support the Device Detection, therewith the Device Manager tool can set
and get CM-variables.

1. GOAL initializes the Device Detection automatically in the state GOAL_FSA_INIT if the Device

Detection is enabled by the compiler-define GOAL_DD.

2. Set the DD-customer-ID to 1:
goal_ ddCfgCustomerID(1);

3. Set the device name:

uint8_t str[] = ñmyDevò;

goal_ddCfgModuleName(str);

4. Now the Device Manager tool can read and write CM-ǾŀǊƛŀōƭŜǎ ƻƴ ǘƘŜ ŘŜǾƛŎŜ άƳȅ5ŜǾέΦ

7.2 Command line interface (CLI)

GOAL provides a command line interface, which is used by GOAL core modules and other GOAL
extension modules. The available commands for the command line interface are described in the
appropriate chapters. But it is also possible to integrate a command line interface for the own
application, see chapter 0. The source code of the GOAL command line interface is located in the
ŘƛǊŜŎǘƻǊȅ Χ\goal\protos\cli.

The command line interface supports the auto-completion of commands and provides a command
history. The size of the command history is configurable during compilation.

The data exchange about the command line interface is realized

¶ via a UART connection
For further medias please contact port.

The command line interface provides an interface for debugging, see chapter 7.2.5.

example:

Χ\goal\appl\00410_goal\cli\ *

7.2.1 Configuration

The following compiler-defines are available to configure the command line interface:

GOAL_CONFIG_CLI:
0: command line interface is disabled (default)
1: command line interface is enabled

GOAL_CONFIG_CLI_HISTORY:

Version: 0.1 136/169

0: history of the command line interface is disabled (default)
1: history of the command line interface is enabled

GOAL_CONFIG_CLI_HISTORY_SIZE:

number of history entries

GOAL_CONFIG_CLI_UART:
0: command line interface is not connected via UART (default)
1: command line interface is connected via UART

GOAL_CONFIG_CLI_DBG:

0: debug interface of the command line interface is disabled (default)
1: debug interface of the command line interface is enabled

7.2.2 Platform API

7.2.2.1 UART connection

Prototype GOAL_STATUS_T goal_tgtCharGet(char *pBuf)

Description This indication function receives a single char from the UART connection.

Parameters pBuf buffer for a single received char from UART
Return values GOAL return status, see chapter 8.3

Category mandatory for GOAL command line interface via UART

Condition none

Prototype GOAL_STATUS_T goal_tgtCharPut(char c)

Description This indication function transmits a single char via the UART connection.

Parameters c single char to send via UART
Return values GOAL return status, see chapter 8.3

Category mandatory for GOAL command line interface via UART
Condition none

7.2.3 Command structure

Each CLI command is composed of:

¶ a main-command,

¶ one or more sub-commands,

¶ an action and

¶ one or more optional parameters.

Version: 0.1 137/169

7.2.3.1 Main-command

port ǊŜŎƻƳƳŜƴŘǎ ǘƻ ǳǎŜ άŀǇǇƭέ ŀǎ Ƴŀƛƴ-command for application-specific commands to separate
these commands from the existing commands in the GOAL system.

7.2.3.2 Sub-command

The sub-command is any specific name.

7.2.3.3 Action

Table 12 provides an overview about binding action names for standard actions. Not all actions
must be implemented by a specific command.

Action Description

add adding a value to a set of values, e.g. an entry to a table

help put out a help string for the main-/sub-command
set set the value of a specified parameter

show put out the value of a specified parameter
rem removing a value from a set of values, e.g. remove an entry from a

table
Table 12: command line standard actions

7.2.3.4 Parameters

7.2.3.4.1 Integer values

Integer values are currently only accepted with a base of 10 and may optionally contain a sign.
Example: The following command sets the port membership of port 1 to VLAN 1024:

$ eth vlan port add 1 1024

7.2.3.4.2 Strings

{ǘǊƛƴƎǎ ŀǊŜ ǎǘŀǊǘŜŘ ŀƴŘ ŜƴŘŜŘ ǿƛǘƘ ŀ ά-character.
Example: The following command sets the value of config variable 0-м ǘƻ ǾŀƭǳŜ άŜȄŀƳǇƭŜέ

$ cm set 0 1 ñexampleò

7.2.3.4.3 Port numbers

Ports are entered as integer values starting with 0 up to max. port number + 1. Max. port number
+1 represents the management port. A 5 port switch provides ports 0 ς 3 (external ports) and port
4 as management port.

Version: 0.1 138/169

Example: The following commands set the default VLAN tag for port 1 to 1024 with prio 7:

$ eth vlan default set 1 1024 7

7.2.3.4.4 MAC addresses

MAC addresses are given in the format xx:xx:xx:xx:xx:xx where xx stands for a two char
hex number.
Example: The following command adds port 3 to MAC address 00:11:22:33:44:55

$ eth mactab mac add 00:11:22:33:44:55 3

7.2.3.4.5 IP addresses

IP addresses are given in the format xxx.xxx.xxx.xxx where xxx stands for a one- to three-

digit decimal number.
Example: The following command sets the IP address, netmask and gateway for the TCP/IP stack:

$ net ip set 192.168.1.133 255.255.255.0 0.0.0.0

7.2.4 Creating application-specific commands

The following steps are necessary to implement application-specific commands for the command
line interface:

1. Create commands, see chapter 7.2.3.
2. Implement the initialization of the application-specific command line interface.
3. Implement command handlers for main- and sub-commands.
4. Register commands to the command line interface by function goal_cliCmdReg() and make

the command handlers of the own commands known.
5. The commands are processed loop-controlled in the state GOAL_FSA_OPERATION. It is

possible to return a response by function goal_cliPrintf().

Chapter 7.2.6.1 shows an example.

7.2.5 Command line interface for debugging

The following commands are available for the debug interface:

Command dbg memb show <address> [count]

Description Shows the byte memory value (8 bit) at the given address. If count is given, up to
count values will be shown starting at the given address.

Parameter

<address> The memory address where the reading begins in hex
format (0xXXXXXXXX).

[count] Specifies the number of values to be read starting at the
given memory address.

Version: 0.1 139/169

Command dbg memw show <address> [count]

Description Shows the word memory value (16 bit) at the given address. If count is given, up
to count values will be shown starting at the given address.

Parameter

<address> The memory address where the reading begins in hex
format (0xXXXXXXXX).

[count] Specifies the number of values to be read starting at the
given memory address.

Command dbg memd show <address> [count]

Description Shows the double word memory value (32 bit) at the given address. If count is
given, up to count values will be shown starting at the given address.

Parameter

<address> The memory address where the reading begins in hex
format (0xXXXXXXXX).

[count] Specifies the number of values to be read starting at the
given memory address.

7.2.6 Implementation guidelines

7.2.6.1 Create application-specific commands

This example assumes that the command line interface is implemented in an own C module, e.g.
appl_cli.c.

1. Digital outputs shall be set via the command line interface. The given value is bit-coded. Each

bit relates to a specific DOUT channel. The relevance of the bits in the value can be managed
by a bit mask. According to chapter 7.2.3 the command name is:

appl dout set <value> <mask>

2. Define the string variable in the source code:

const char strAppl[] = ñapplò; /* main- command */

const char strApplD out[] = ñdoutò; /* sub- command */

const char strApplSet[] = ñsetò; /* action */

3. Implement the initialization function to register the commands and to make the handler

applCmdHandler() for all commands known:

GOAL_STATUS_T applInitCli(void) {

 GOAL_STATUS_T res; /* GOAL return value */

 GOAL_CLI_CMD_T *pApplCliHdl; /* handle to main - command */

 GOAL_CLI_CMD_T *pApplCliSubHdl; /* handle to sub - commands */

Version: 0.1 140/169

 /* register main - command */

 res = goal_cliCmdReg(strAppl, NULL, applCmdHandler, NULL,

 pApplCliHdl);

 /* register sub - command */

 if (GOAL_RES_OK(res)) {

 res = goal_cliCmdReg(strApplDout, NULL, NULL, pApplCliHdl,

 &pApplCliSubHdl);

 }

 /* register action */

 if (GOAL_RES_OK(res)) {

 res = goal_cliCmdReg(strApplSet, NULL, NULL, pApplCliSubHdl, NULL);

 }

 return res;

}

4. Implement the command handler applCmdHandler():

void applCmdHandler(

 GOAL_CLI_DATA_T *pData /* [in] complete received command */

)

{

 GOAL_STATUS_T res; /* GOAL return value */

 const char *pStr = NULL; /* string argument from the received

 command */

 unsigned int len = 0; /* length of the argument in byte(s) */

 uint8_t cmdFound = 0; /* flag to check the existence

 of the command * /

 /* The main - command is already analyzed by the GOAL command line

 interface and this command handler was called. */

 /* eliminate sub - command from the received command */

 res = goal_cliParamGet(pData, 1, &pStr, &len);

 if (GOAL_RES_OK(res)) {

 /* check sub - command */

 if (strApplDout == pStr) {

 /* eliminate action */

 res = goal_cliParamGet(pData, 2, &pStr, &len);

 if (GOAL_RES_OK(res)) {

 /* check support of ac tion */

 if (strApplSet == pStr) {

 /* execute application - specific action */

 applDoutSet();

 cmdFound = 1;

 }

 }

 }

 }

 /* print a response */

 if ((GOAL_RES_OK(res)) && (1 == cmdFound)) {

 goal_cliPrintf(ñcommand executed \ nò);

 }

 else {

 goal_cliPrintf(ñunknown command\ nò);

 }

 return res;

}

Version: 0.1 141/169

5. Implement the application-specific function applDoutSet() to handle the DOUTs.

6. Register the initialization of the application-specific command line interface. The initialization
shall be executed in stage GOAL_STAGE_CLI in state GOAL_FSA_INIT_GOAL.

GOAL_STAGE_HANDLER_T stageApplCli;
goal_mainStageReg(GOAL_STAGE_CLI, &stageApplCli, GOAL_STAGE_INIT,
 applInitCli);

7.3 Web-server

GOAL provides a smart web-server for embedded systems. The web-server was designed:

¶ for file downloads and

¶ to get information about the current device state and properties.

The web-server supports the following properties:

transfer protocols: ¶ HTTP

¶ HTTPS

request methods: ¶ GET

¶ POST

One or more web-pages can be assigned to one instance of the web-server. The web-pages are
part of the application and must be made available by the application. The web-server provides a
callback function for this purpose, see cbHttpReqFunc() in chapter 7.3.4.

The current device state and properties can be read from CM-variables and application-specific
variables. The application-specific variables can be organized as simple variables or as a one-
dimensional list.
It is possible to store templates for web-pages with placeholders for current values of application-
specific variables. The text substitutions are described in chapter 7.3.2. Web-templates make the
dynamic management of web-pages possible.

The access to the web-server can be limited by user levels. The application can specify, which user
levels shall be supported by the device and which rights the user levels shall have. The
authentication data consisting of user name and the password for each user level are configurable
by CM-variables. The GOAL web-server provides up to 4 user levels.
The user levels can be applied by all instances of the web-server. For each instance of the web-
server the valid user level can be specified during registration. Web-requests are only transferred
to the application after a successful authentication, i.e. the callback function cbHttpReqFunc() in
chapter 7.3.4 is only called after a successful login. The transfer of the user name and the

password via a web-server instance using the HTTP transfer protocol is unsafe. port recommends
using the HTTPS transfer protocol.

Version: 0.1 142/169

HTTPS is activated by the compiler-define GOAL_CONFIG_HTTPS. HTTPS uses the external software
component mbedTLS for encoding und authentication. The access to mbedTLS is realized about
the media adapter for TLS, see chapter 6.4. TLS for HTTPS is initialized and opened by function
goal_httpsNew().
About the CM-variables for HTTPS it is possible to install a private key and an own X509-certificate
for. If no own certificate is stored, the web-server takes a default certificate provided by port.

example:

¶ Χ\goal\appl\goal_http\01_get\ *:
for upload of a web-page

¶ Χ\goal\appl\goal_http\05_template_cm*:
for upload of a web-template with CM-variables and application-specific variables

¶ Χ\goal\appl\goal_http\06_template_list\ *:
for upload of a web-template with lists

¶ Χ\goal\appl\goal_http\04_auth\ *:
for authentication about user levels

¶ Χ\goal\appl\goal_http\02_post\ *:
for file download

7.3.1 Configuration

7.3.1.1 Compiler-defines

The following compiler-defines are available to configure the webserver:

GOAL_CONFIG_HTTP:
0: transfer protocol HTTP is not used (default)
1: transfer protocol HTTP is used

GOAL_CONFIG_HTTPS:

0: transfer protocol HTTPS is not used (default)
1: transfer protocol HTTPS is used

7.3.1.2 CM-variables

The following CM-variables are available to configure the web-server:

CM-Module-ID GOAL_ID_HTTPD

CM-variable-ID 0

CM-variable name HTTPD_CM_VAR_HTTPD_CHANNELS_MAX

Description maximal number of connections available for the HTTP transfer protocol

CM data type GOAL_CM_UINT16

Version: 0.1 143/169

Size 2 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_HTTPD

CM-variable-ID 1
CM-variable name HTTPD_CM_VAR_HTTPS_CHANNELS_MAX

Description maximal number of connections available for the HTTPS transfer protocol
CM data type GOAL_CM_UINT16

Size 2 bytes

Default value from NVS or 0

CM-Module-ID GOAL_ID_HTTPD

CM-variable-ID 2

CM-variable name HTTPD_CM_VAR_USERLEVEL0
Description authentication data for level 0

CM data type GOAL_CM_STRING

Size 32 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPD
CM-variable-ID 3

CM-variable name HTTPD_CM_VAR_USERLEVEL1
Description authentication data for level 1

CM data type GOAL_CM_STRING

Size 32 bytes
Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPD

CM-variable-ID 4
CM-variable name HTTPD_CM_VAR_USERLEVEL2

Description authentication data for level 2

CM data type GOAL_CM_STRING

Size 32 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPD

CM-variable-ID 5

CM-variable name HTTPD_CM_VAR_USERLEVEL3

Version: 0.1 144/169

Description authentication data for level 3

CM data type GOAL_CM_STRING

Size 32 bytes
Default value from NVS or an empty string

The following CM-variables allow to configure the TLS layer used by HTTPS:

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 0

CM-variable name HTTPS_CM_VAR_TLS_SERVER_CERTIFICATE
Description certificate of the web-server

CM data type GOAL_CM_GENERIC

Size 1024 bytes

Default value from NVS or certificate from port

CM-Module-ID GOAL_ID_HTTPS
CM-variable-ID 1

CM-variable name HTTPS_CM_VAR_TLS_PRIVATE_KEY
Description private key of the web-server

CM data type GOAL_CM_GENERIC

Size 1024 bytes
Default value from NVS or an empty entry

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 2
CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_CA_CN

Description common name of the server of the certification authority

CM data type GOAL_CM_STRING

Size 128 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 3

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_CA_O
Description name of the certification authority organization, e.g. the company name

CM data type GOAL_CM_STRING
Size 128 bytes

Default value from NVS or an empty string

Version: 0.1 145/169

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 4
CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_CA_C

Description country, in which the certification authority organization is located

CM data type GOAL_CM_STRING
Size 8 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS
CM-variable-ID 5

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_CN

Description common name of the web-server

CM data type GOAL_CM_STRING

Size 128 bytes
Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS
CM-variable-ID 6

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_O

Description name of the organization provided the web-server
CM data type GOAL_CM_STRING

Size 128 bytes
 Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 7

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_C

Description country, in which the organization provided the web-server is located

CM data type GOAL_CM_STRING
Size 8 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS
CM-variable-ID 8

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_NOT_BEFORE
Description from what date and time the certificate is valid

CM data type GOAL_CM_STRING

Size 20 bytes

Version: 0.1 146/169

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CM-variable-ID 9

CM-variable name HTTPS_CM_VAR_TLS_SRV_CERT_NOT_AFTER
Description from what date and time the certificate is invalid

CM data type GOAL_CM_STRING
Size 20 bytes

Default value from NVS or an empty string

7.3.2 Web-templates

The GOAL web-server allows to implement templates for web-pages with placeholders for current
information. The placeholders are substituted by the current values by the web-server during the
upload process. The web-server provides placeholders for

¶ CM-variables,

¶ application-specific variables and

¶ lists.

7.3.2.1 CM-variables

The placeholder for CM-variables contains the CM-module-ID and the CM-variable-ID. The web-
server executes the substitution of the placeholder by the CM-variable automatically.
syntax:

[CM:<modNum>, <cmVarNum>]

example:

[CM:0, 2]

7.3.2.2 Application-specific variables

The placeholder for application-specific variables contains the name of the variable in the
application. The web-server requires the current value of the variable from the application by
calling a callback function, see chapter 7.3.4 cpHttpTemplateFunc(), and substitutes the
placeholder in the web-page.

syntax:

[VAR:<applVarName>]

example:

Version: 0.1 147/169

[VAR:applVar]

7.3.2.3 Lists

The web-server provides an effective method to generate lists in HTML text. The HTML text for a
single list entry can be enclosed in the placeholders FOREACH and /FOREACH in the web-template.
FOREACH marks a one-dimensional list and the HTML text between the placeholders FOREACH and
/FOREACH is execute for each list element. The place for the list entry is marked in the HTML text
by the placeholder VAR with the desired variable name. After the substitution of the placeholder
VAR the web-server changes to the next list entry automatically, i.e. it is not possible to substitute
the same list entry twice. Therewith it is only necessary to describe the first list entry in the web-
template.

The web-server only gets the ID and the name of the list and the number of list elements during
the registration. The content of the list elements is managed by the application. The web-server
calls a callback function to get the content of the next list element, see chapter 7.3.4
cpHttpTemplateFunc().

Nested lists are allowed. The maximal supported nesting depth is 4.

syntax:

[FOREACH:<listName>] é [/FOREACH]

example for HTML listing:

 [FOREACH:mainList]

 main: [VAR: main Name]

 sub - lists:

 [FOREACH]

 sub: [VAR: sub Name]

 [/FOREACH]

 [/FOREACH]

Example Χ\goal\appl\goal_http\06_template_list\ * generates a HTML listing. The indication in the
web-browser is shown in Figure 23:

Version: 0.1 148/169

Figure 23: web-page of example 06_template_list

¢ƘŜ ǇƭŀŎŜƘƻƭŘŜǊ ώChw9!/Iϐ Χ ώ\FOREACH] can also be integrated in other HTML formatting like
tables.

7.3.3 Characters

square brackets: If the HTML text shall show square brackets, the square brackets must be written
double, because placeholders in web-templates are bordered by square brackets.
example: An array instruction shall be shown on a web-page.

HTML text: applArray[[5]]
Web-browser view: applArray[5]

double quotes: Double quotes in the HTML-text must be protected by a backslash, because strings
in the C code are enclosed by double quotes.
example: uint8_t webPŀƎŜώϐ Ґ άғƘǘƳƭҔғƳŜǘŀ ŎƘŀǊǎŜǘ Ґ \έǳǘŦ-8\έҔ Χ ғκƘǘƳƭҔέΤ

The rules for HTML text are valid for all other characters.

7.3.4 Callback functions

Prototype GOAL_STATUS_T cb HttpReq Func(GOAL_HTTP_APPLCB_DATA_T

* applData)

Description The received and valid web-request is passed to the application. The application
has to process the web-request and to produce a web-response.

