GOAL V2.20

Generic Open Abstraction Layer

Programmer’s Manual

port GmbH
Regensburger Str. 7

D-06132 Halle/Saale

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Disclaimer

This manual representsthe current state of the product. Pleasecheckwith port.de for the latest version asthe
document may have a newer version since errors may be corrected or changesfor a newer version of the product
may be incorporated. Port.de assunesno responsibility for errors in this document.Qualified feedbackis

appreciatedat service@port.de

This documentis the Intellectual Property of port.de andis intended to be usedwith the describedproduct only.
It may be forwarded and/or copiedin the original and unmodified format. All rights reserved.

The product enablesto usetechnologiessuchas PROFINETEtherNet/IP and/or EtherCATand others. These
technologiesare promoted by trade organizations,suchasPNO(profibus.org), ODVA(odva.org) or ETG
(ethercat.org). Thesetrade organizations aswell maintain the specification and care about legalissues.

We strongly recommendto becomea member of these organisations.Most technologiesare making use of
patented or otherwise copyrighted technologies,approachesor other intellectual property. The membership
usually automatically entitles the member for use of most of the technology-inherent copyrighted or otherwise
protected Intellectual Property of the corresponding trade organization and most 3rd parties. Otherwise the user
will needto obtain licensesfor many patentedtechnologiesseparately.

Further we suggestto you to subscribeto the corresponding ConformanceTest Tool of thesetrade organizations.
For instancethe ODVAonly acceptsconformancetest applications from companieswho have a valid membership
and have a valid subscription to the recent ConformanceTest Tool. We asport are membersin all corresponding
organizations and are holding a subscription to thesetools - however you asa customer needto havean own
membership and an own subscription to the tool.

All rights reserved

The programs, boards and documentations supplied by port GmbHare createdwith due diligence,checked
carefully and tested on severalapplications.

Nevertheless port GmbHcannot guaranteeand nor assumeliability that the program, the hardware board or the
documentation are error -free or appropriate to serve a specific customer purpose.In particular performance
characteristicsand technical data givenin this document may not be interpreted to be guaranteedproduct
featuresin any legal sense.

For consequentialdamagesgvery legal responsibility or liability is excluded.

port hasthe right to modify the products describedor their documentation at any time without prior warning, as
long asthesechangesare made for reasonsof reliability or technicalimprovement.

All rights of this documentation are with port. Unlessexpressivelygranted - the transfer of rights to third parties
or duplication of this documentin any form, whole or in part, is subjectto written approval by port. Copiesof this
document may however be madeexclusivelyfor the use of the user and his engineers.The user is thereby
responsiblethat third parties do not obtain accesgo thesecopies.

The soft- and hardware designationsusedare mostly registered and are subjectto copyright.

Copyright

© 2019port GmbH
RegensburgerStralRe?
D-06132 Halle
Tel.+49345-777550
Fax.+49345-777 55 20
E-Mail service@port.de
www.port.de

www.port-automation.com

Version:0.1 2/169

mailto:service@port.de
http://www.port.de/
http://www.port-automation.com/

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Contents
3 [1o T 3 Tox 1 o o S 12
00 R A o o U | @ 7 PR RPSP 12
1.2 How to read thiS dOCUMENL.........oviiiiiiiiiiiieit e e e e e e e 13
P2 | 15 71 | = o] o R 14
P2 R Y o o] 1= Y[] S =T o] o) P 15
2.2 Platform (PIAt).....ccouuiiiii i 15
PR B (o] [=Tot KSR (o] (o] [T o £ OO PP PPP P TTPPIN 16
I B 10 7Y I 41T To (=] PP PP PPPPPPPPPPPPTPR 18
T R €1 7 E oo] (PP PP PP PPRPPPRRPIR 19
3.2 GOAL MEAIA AUAPIRL. ... ettt rae e e et eeeeeeeeeeeeeeeeseessssrnnnnnnnne 20
3.3 GOAL Media INTEITACE........ccee e e e et n e e e n e e e e eeeas 20
3.4 GOAL extension MOAUIES.uuuiiiiiiiiiiiiiiiiiiiiee e rreeees 20
3.5 GOAL ArChitECIUINESottt e e e e e e e e e e e eeas 20
3.6 GOAL DOAIUS. ... 20
3.7 GOAL AIIVEIS. ...ttt e ettt e e e e e ettt e e e e e e e e s e s bbb brab e e e e eaeeeeessannns 20
4 GOAL State MACKINE. ... i a e e e e e e e r e e e e e e e e e e e e anes 21
O €T A N 10 3 22
4.2 GOAL INITANZATIONcciiiiiiiiiiitiiie ettt a e e e e e s eseeab e 23
Nt R = 1o 1 Vo PP 23
4.2.2 Platform APl ... 25
4.2.3 Registration of media interfaces, media adapters and drivers.............cccceeeenn.. 25
4.2.4 Applicationspecific indication function for initializatian...............cccccevvvvvvvevnnnnnns 26
4.2.5 Install loopcontrolled ProCESSES........coovviiiiiiii e 27
4251 Implementation Of APPL_TOOP(). ... uveeereeeieie e 27
4252 ULt 1o o 111 PR 28
4.2.6 Applicationspecific indication function for configuration................cccccvvieeennn. 29
4.2.7 Integration of user functions in staging SYSteM...........coooiiiiiiiiieiiieee e 29
R I €10 7Y M) o 1T =1 1o F PP PPPPPPR TP 30
O € 1@) IR 191 o RO 30
o R o - | SRR OPPPRRPORRRI 30
A 4.2 RSBt e e et e e e e et aar e aaaeeane 30

Version:0.1 3/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5 GOAL core Modules (QOAL)........cuuururrriiiiiiiiiieiiisrrr s s e e e e e e e e e e e e e e e e e e e aaaaaaaeaaaaaaees 31
5.1 Heap Memory Allocator (goal_allog)..........ccoviviiiiiiiiei e 31
5.1.1 CONFIQUIATION.....ceiiiieieiiiiitt ittt et e e e e e e e s r e e e e e e e e e e e aannnnereeees 32
5.1.2 Implementation gUIdEIINES...........uuuuiiiiiiiicieirrr e e e e e e e e e e e e e e e e e e 32
5121 AllOCALE 8 MEIMOY FANGE ... eeiieitiiee et et e ettt e e sttt e e e abee e e s s sbbe e e e abbeeeeabeeeeesbaeeeesbaeeeeane 32
5.2 Bitmap handling (goal_Bm).........cooorrmiiiii e 33
5.2.1 Implementation QUIAEIINES.........coiiiiiiiiiiieieiee e 34
5.21.1 Create a bHield With @ 10CKcoi e 34
5.2.1.2 Take a bit from the DBHIEIdoooiiii e 34
5.2.1.3 Return abitto the bHfield............... 34
5.3 Configuration Managegoal _Cm)........cccooiiiiii i 34
5.3.1 CONfIQUIALION.... ...ttt e e e e e e e e e e et e e e e e e earaa 36
5.3.11 COMPIEFABTINES. ...ttt e e e e et e e e e e e e e e sabb b e e e e e e e e s e nannreees 36
5.3.1.2 O 1Y 7T =T o] L= SRR 36
5.3.2 Callback fUNCLIONS.........cooiiiiiiiieieeeeeee e e e e e e e e e e e e 36
5.3.2.1 CMVArIADIES DASEA.......eeiiiiiiiie e e e 37
5.3.2.2 CIMEMOAUIE DASEM. ... et e e e e e e s e e e e e e e s e annnbeeeeaeeeas 38
5.3.3 Creating a CMnodule and a variable liSt..............cccccviiiiiiiiiiiiiiciecceee e 39
5.3.4 Virtual Variabl@S.........cooi oo 40
5.3.5 Command line interface............ouvveiiiieiiiiiiiiiie i eeennnnn . A
5.3.6 Implementation gUIdEIINES............uuuuiiiiiiiiccie e e e 41
5.3.6.1 Creating a NEW CNNOAUIE.............oueiiiee e rnreeae e 41
5.3.6.2 Add a new CMariable t0 @ CMNOAUIE.........cooiiiiiii e A2
5.3.6.3 Load and save GWMariables NONVOIALIIE............ccceeiiiiiiiiiiiee e A3
5.4 Generic Ethernet Frame Handler (goal_eth)............cooiiiiiiiiiiii e 44
5.4. 1 CONFIQUIATION.....ceiiiiiiiiiiiiit ettt e e e e e e e e r e e e e e e e e e e nnnnreeees 46
54.1.1 COMPIIEI-AETINES. ...ttt et e e et e e e e s abbe e e e abreeeeaas 46
5.4.1.2 (@Y Y= Ty = o] = SO PRPPPPPRPRRPPRRY. ¥ 4
5.4.2 Callback FUNCLIONS........cooiiiii e e e eaaan 48
5.4.3 PlAtfOrm APl ... 49
5.4.4 EtherNet INTEIrfaCe.........coovviiiiiiiiiieeeee e a e e e e e e aeas 50
ST 3 TV I PRSPPI 54
546 MACHADIE..... e 54
ST A o 1= 11T PSSP 55
T 3 I © To NS TS (] o = S PTSP 55
5.4.9 Implementation QUIdEIINES........cooiiiiiiiiiiieee e 55
5491 Configure speed rate by special CoOMMaNd............cooiiiiiiiiiie i 55
5.4.9.2 Restart the autonegotiation with goal_ethCmd().........cccvmeriree i 56

Version:0.1 4/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.49.3 Send and reCeiVe BthEINET frAMES.......o.u et e e e e e e e e as 56
5.5 Command N MBI ACE. ... el 56
5.5.1 Naming and parameter CONVENTIONS..........cceuiiiiurrriiiieeieeeeeeseseiierrereeeeeeaee e 56
o T T2 Yox £ 0] o 1SR TRR Y4
5.5.3 Command parameter CONVENLIONS...............coevviiiiiieeeeeeereeeieeereneeeeererernanannaa——.. 57
5.5.3.1 INEEQET VAIUES.t e e e s et e e e e e e s et e e e e e e s s saabateeeeeeesssnnntnteeeeaeesesanns 57
5.5.3.2] 1] 0 0 T P PP PP P PPPRPRPPPPPY 57
5.5.3.3 0] 1 £ 57
5.5.3.4 A ORr=To [(=TT =TT 58
5.5.35 1o (6 [0 [(ST <t TR 58
B.5.4 EHNerNet INtEITACE. ... oo e e 58
D D D VL AN . e 58
B.5.6 IMAC HADIG. ..o 60
5.5.7 Denial of SErvice PreVentiQn.........co. oo 62
5.5.8 POIt SEINGS. .. i 63
5.5.9 QOS SEIINGS. .. .uuueeiiiiiieiiiiiiitiii et e e e e e et e e e e e e 65
5.5.10 CONfIg MANAGEL........cccuviiiiiiiiiiiiiiiriiiei e s e e s e e e e e e e aaaaaaaaaaaaaaaaaaeeeeees 66
5.5.11 NEtWOIK INtBITaCE. ... e e e] 67
5.5.12 [P SEIINGS. ...ttt e e e e e r e e e e e e e e 67
o TS = 1) (o YRS 6.7
LIS T F Yo o <Y 71
5.6.2 Ethernet StatiStiCS. . .c.ovieiiiiiee ittt e e reae e e e senareserennsenenenneeend 1
.7 GENEIIC GOAL INSIANCES ... ettt e e et e e e eneens 71
SIS T o Yo 4T P SPPPPPRSPRS 72
B8 1 Pl AONM AP e e e s 72
5.8.2 Implementation QUIAEIINES........cooiiiiiiiiiiiieee e 74
5.8.2.1 (B EY ST W [0] LT PRTTTRPT 74
SIS I o To o 11 o PRSP 74
5.9.1 CONTIQUIALION......ceiiiiiiiiiiiiiiiiiiiieittiiie s e s s e e e s e e e e e e e e e e e e e e e e e aaaaaaaaaeaaeaeaeees 75
B0, 2 PU A O AP e 76
5.10 MESSAGE LOGORL....uuuiiiiiiiiietiiii ettt e ettt e et e et et e e e e e e e e e et e e e e et e e e e e eaa s 76
5.10.1 CONfIQUIALION.......uiiieiieiiiitiee e e e e e e e e e e e e e e e e et e e e e e e e earaaaaas 78
5.10.1.1 COMPIIEFAETINES.ttt e e e e e e bbb r et e e e e e s s nbbbeeeeaaeeeannn 78
LT O TR 2 OV 2 V=Y =1 o] [T PR PTRRTRRRRRRY £ o
5.10.2 Implementation QUIAEIINES.........ccoiiiiiiiiii e e e e e e eanes 79
5.10.2.1 Write a log message without parameters to the ring buffer.............cccooiiviieee e 29

Version:0.1 5/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.10.2.2 Write a log message witharameters to the ring buffer............cocc 80
5.11 Network handling.......ccooooeiiiiiiiii e ————— 80
5.11.1 CONFIQUIALIM.ceeeeieeeeiiiiiiet ettt e e e e e e e r e e e e e e e e e e e e nnnnreeees 82
5.11.1.1 COMPIEFAETINGES. ...ttt et e skt e s e e e e s e e e s aaneee s 82
B5.11.1.2 CIMIVANADIES.cciiieeee ettt rne s 33
5.11.2 Callback fUNCHIONS.........coviiiiiiiiiiiiiiiiiiii e e e e 85
5.11.3 1P SEALISHICS ..uttuutuuuunnnnniiiiiisess e e e s s e e e e e e e e eeeeeeeeeeeeeaaseeeeeeeeeeeeeeeeeeeeeeessesnnssnssnnnnsnnnns 86
5.11.4 PIAIOIM APL ...t e e et e e e e e e e e 92
5.11.5 Command liN€ INtEIaCe........ccoiiiiii i 96
5.11.6 Implementation gUIdEINES............uuuuiiiiiiiiieee e 96
5.11.6.1 Configure, open and activagenet Channel..............oooouiiiiiieiin e 96
oI G A S 1= o To o = = TP PRR 97
5.12 Queue DUfEr POOL........ccee s 98
5.12.1 Callback fUNCHIONS........coeiieiiiiieiiiiiiiiiiiii e s e e e e e e e e e e e e e e e aeaaaaaaaaeees 101
5.12.2 BUfEr NEAERL. ... 102
5.12.3 BUEr flags.....ccovviiiii it 102
5.12.4 INterN@l QUEUE USAGE........ceiiiiiiiiiiieieiie e e e e e e ettt e e e e e e e s s e s sibbb e e e e e e e e e e e aanns 103
5.12.5 Implementation gUIdEINES.............uuvuiiiiiiiii e a e e e e 104
5.12.5.1 Get an uninitialized buffeirom the queue and add the buffer to the queue.......................... 104
5.12.5.2 Get an initialized buffer from the queue and release the buffer without a callback functiorl05
5.12.5.3 Get an initialized buffer from the queue and release the buffer with a callback function....106
5.13 RING DUIEL...eee e e e 106
5.14 Task abStraCtion [AYEL..........coou i 107
ST 0 R o T 1o [= L1 [0 107
5.14.2 PlAtfOrm APl ...ttt 108
S0 T I 0 PP 109
5.15.1 Callback fUNCHIONS........ccviveiiiieiiiiiiiieiiii e e s e e e e e e e e e e e e e e e aaeeaaaeaees 111
5.15.2 PlAtfOrm APl ... e 111
5.15.3 Command liN€ INtEIfaCEccooiii e 112
5.15.4 Implementation QUIAEIINES.........cooiiiiiiiiiiiiee e 113
5.15.4.1 Use a periodic soft timer and start the timer immediately...........ccooeoviiiieiii i 113
5.15.4.2 Use a single soft timer and start the timer in the applicatian..............cccccovvvciiiieee e, 113
5.15.4.3 Stop hard timer withcallback FUNCHON............cuuiiiii e 114
B5.16 TrACING. ... eeeeeeeeeeeeereuestseenuaaa s s s s s e s s s saaaaaaaaaaaaaaaaaaaaaaaaaeaseeesssessresesessssssnssssnnnssnnnnen 114
5.16.1 TracCing Via ITM.....cooiiiiiiiiiie ettt e et e e e e e e aaan s 116
5.16.2 TraCiNg VIA PIN..ccoiiiiiiiiieiiie e e e e ettt e e e e e e st e et e e e e e e e s s ansbenreeeeeeeeeeas 116
5.16.3 CONTIQUIALION........eveiiieieiieiiiiiiiiisr s s s s s e e s s s e e e e e e e e aaaaaaaaaaaaaaaaaeeaeeeeeeeeeeeeees 116

Version:0.1 6/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

S0 A U1 1171 V28 10 o 1] 1P 116
6 GOAL media (goal_Media).........coiiiiiiiiiiiiiie e 118
6.1 NONVOIALIE STOTAGE. .. . uueeeeieiieeeei ittt e e e e e e r e e e e e e e e e e aans 118
6.1.1 NVS Media iNTEITACE.uuiiiiiiiiiiee e 118
6.1.1.1 Implementation GUIHEINESii e 119
6.1.1.1.1 Registration of @ MemOry region...........coooei i 119
6.1.1.1.2 Write data to NONVOIALIlE MEMOIY.......cciiiiiiiiiiie e 120
6.1.1.1.3 Read data from nonvolatile MemMQALY..........ccuviiiieei i 120
6.1.2 NVS Media 08PN ..o ittt 121
6.1.2.1 Implementation GUIdEINESoi e 121
6.1.2.1.1 Write data to NONVOIAtile MEMOIY........coiiiiiiiiiee e 121
6.1.2.1.2 Read data from novolatile MEMOIY........coooiiiiiii e 121

B.2 LB D e 122
6.2.1 Implementation QUIdEINES............uviviiiiiiiiii e 122
6.2.1.1 Switch on/off and get the state of a single LED.............ccceeiie i 122
6.2.1.2 Switchon/off and get the state 0f & LED grOUP.......ccoiouiiiiiiiiiieeiiiiee et 123
8.3 S L et 123
6.3.1 Callback fUNCHIONS........ceeiiiiiiiiiiiiiteii e e e e e e e e aea s 125
6.3.2 Implementation QUIAEIINES.........oooiiiiiiiii s 126
6.3.2.1 Read and write data via the SBUS..........oooiiiiii e 126
6.3.2.2 Configure the SPIINtEraCe.coc e e e e 126
6.3.2.3 HANAIE SPI @VENLS......ciiiitiiiie ittt e e e s aab e e s snbe e e e 127
8.4 TS it a e anan 127
6.4.1 CONFIQUIALION......uuiii it e e e e e e et et e e e e e e e eesaa e e e eeeeeenne 128
6.4.2 MDEA TLS lIDIAY e e 128
6.4.3 Implementation QUIAEIINES.........oooiiiiiiiiiiiii s 129
6.4.3.1 INITIANIZE TS .ttt e e e e s s e e e e e e s s e et e e e e e e e s sannnteereeeeesansnnneneeeeeesanns 129
6.4.3.2 USE @ TLS ChANNEL......oiiiiiie e 131
G0 T 41/ 1 S 131
6.5.1 Integration Of CIMFS..........cuuiiiieiiiiii s e e e e e e e e e e e e e e e e e e e aaaaaaeaaees 131

7 GOAL extension modules (ProtOS)........ccouvviuiiiiiiie et e e e e e e eeenenns 133
7.1 Device DeteCtion (DD)........ooiiuuuiiiieiieeeeee ettt e e s e e e e e e 133
4% T o T 1o [= L1 [0 P 134
7.1.1.1 (@0 4] 01 L=T 70 = 10 T= PSSR 134
7.11.2 CIMIVANIADIES. ...ttt e e 134
7.1.2 Implementation QUIOE..........uuiiiiiiiieee et 134
7121 Configure the 10Cal AEVICE........coiiiiiii e 134
7.2 Command line interface (CLL)......coooiiiiiiiei e 135

Version:0.1 7/169

geal

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

4% R o 1110 8= L1 0] o 135
T.2.2 PlatfOrm AP et 136
7.2.2.1 (AN = I oT0]] g T=Tox 1o o 136
7.2.3 COMMAND SITUCTUNE ... ettt e e 136
7.2.3.1 [V E= 1T el 0 0] 0 1= o [0 TP 137
7.2.3.2 YU cYoTo] 110 1= T T 137
7.2.3.3 o1 1[0 o T 137
7.2.3.4 (g 1= 1 0] (<] £ 137
A R S R 1 (=T o =T R = 10T S PP PRUT PP 137
R T S S 1 o =T PP PP PTPPRO 137
I T o T i 191001 o =T £ 137

VR R Y VY O To [0 | 1YY 1T 138

F R R N T | = 1o [0 [YT <Y TP 138
7.2.4 Creating applicatiospecific COMMANGS........cccoiiiiiiiiiiieeiee e, 138
7.2.5 Command line interface for debugging..........ccvvvvvieiieiiieeereririeiiieiieeeeennenanans 138
7.2.6 Implementation gUIdEINES............uvviiiiiiiiiii e a e e 139
7.2.6.1 Createapplicationrspecific COMMANGS...........cuviieiiiiiiiiiiir e 139
R TLV (=] 0 2 oY=] V<] SRR 141
4 20 R o T 110 8= L1 0] o 142
73.11 COMPIIEFAETINES. ...ttt st e et e e s a e e s nanaeeas 142
7.3.1.2 01V A= T T= 1 o] [T, 142
RS I LY (= o5 (=] 0] o] F= 1= 146
7.3.2.1 (O81Y Y =T T= 1 o] (ST 146
7.3.2.2 ApplicationsSpecific Variables.............ccuiiiiiii e 146
7.3.2.3 LiSES ettt et ettt ettt ettt ettt ettt ettt et ettt et ettt et ettt 147
G TR T O o F- T = (o1 (= £ TR 148
R T I O || o 1= Ted 1 U] Tox 1[0 1= 148
7.3.5 Implementation guideling.............oooor i 149
7.35.1 UPIOA @ WEEDAGE. ...ttt e et e e s e e b e e e e e 149
7.35.2 R L= Yo I WO T4 =1 o] [T 150
7.3.5.3 Read applicatiofspecific Variable. ..o 151
7.35.4 [L= T = T 1= AR 153
7.3.5.5 Y A WU <T g (LY <Y T 155
7.3.5.6 (D101 a1 (o F=To I {1 1T 156

B S 1= 1 | 157
S N d o e T (oY 7= | 157
TA.2 IPVAFITEWALL. ... e ettt a e 158

8 Implementation SPECITICS........cceiii i 159
8.1 NAMING TUIES ..eeii e e et e e e e e e e e e e e e e e e e e e aeees 159
8.2 GOAL ALA LY PES. ..ttt e e e ettt e e e e e e e e e e e e e e e e e r e e e e e e e e e 159
Version0.1 8/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

8.3 GOAL STATUS.....cceeeeiiiiee e e ettt e nnn e e e e e e nnnnaaas 160
8.4 AlIGNMENL... .ot a e e e e e e e aaaas 160
8.5 HEAP MEIMOIY SIZE.. ..o as 160
9 Additional platformspecific indication fuNCtioNS.............cccee e, 162
10 Version iNfOIMALION.uiiii ittt e e e e e e s e e e e e e e e e e e e snnereeees 163
3 R 1 [1517 Y/ PP 164
12 RETEIENCES. ...ciii ittt e ettt e e e e e e e s e s bbb e e e e e e e e e e e e e aaae 165
R T 1 T L= PR PTTR PP 166

Version:0.1 9/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Table of figures

Figure 1: components Of @ GOAL SYSIEM.......ccuiiiiiiiiiiiiiiiiiiiiet e 12
Figure 2: GOAL dir€CtOry StTUCIUIE.uuueiieiiiiii s e e s eeeeeeeees 14
Figure 3: structure of the directory appl...... ..o 15
Figure 4: structure of the directory plat..........ccccoooeiiiiii e 16
Figure 5: structure of the direCtory ProjectS.........ccuuuuiiiiiiiiiiiii e 17
Figure 6: GOAL MOAEL.... ... e e e e e e e e e e aaaeas 19
Figure 7: GOAL State MaChINe...........uiiiieiiiie e 21
Figure 8function order at Staging.........ccooeeeiiiiiie e —————- 24
Figure 9: bitmap handliNg.........ooouiiiiii e e e 33
Figure 10: data structure and data flow of the Configuration Manager..............cccccevvvvvvnnnnee 35
Figure 11: ethernet frame handler as part of the GOAL SySteml..........ccoevvvviiiieieeeeeeieiiiinnnnn. 44
Figure 12: RX ethernet frame handling.............oooooiiiiiiiiiiee . 4D
Figure 13 integration of the message [0gger........c.ooovvviiiiiiii e eeeaiii . L O
Figure 14: data Structure Of & 10g MESSAQE.cccuiiiiiiiiiiiiiiiii et 77
Figure 15: topology for net channels..............ooo oo 80
Figure 16: determination of the local address of net channels...........c.cooooocis 81
Figure 17: queue buffer NaNAINgG..............uuuriiiiiii e 99
Figure 18: typical case for hard timer with operating SyStem............cccuvviiiiiieeeernniiiiiiieee, 110
Figure 19: typical case for hard timer without operating system.................cccccevvrvvvveennnn. 110
Figure 20: soft timer Nammhg.........ccoooiii e 110
Figure 21: media adapter for SPl........ccoooiiiii e 118
Figure22: iINtegration Of TLS......ooi it e e e e e e e e e e e e e e e aaaeeeeas 128
Figure 23: wekpage of example 06_template liSt.........cccoooeeveeiiiiiiiiee, 148

Version:0.1 10/169

7 \ INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

Changelog

Version Changes

1.0 Initial release

Version:0.1 11/169

7 \ INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

1 Introduction

1.1 About GOAL

GOAL is a sophisticated middleware to integrate real time communication in applications for
industrial networking GOAL conects extensionmodules, various operating systenand GOAL
coremoduleswith applications on different hardware platform$he modular structursimplifies
the development of embedded systeraad makes the exchange of single GOAL components
possible, for gample the communication profilean be changed by the substitution of the
extension modulesvith the suitablecommunication library.

Operating "
GOAL extension |- - --=----"""""" . - TTTTmms-- - GOAL core

modules modules

Figurel: components of a GOAL system

The GOAL concept differentiates betwedwardwaredependent and hardwarendependent
sections in order to make the exchange of platforms possilieout the rearrangement of the
completeembedded system

This manual describes the GOAL components, the GOAL structure and the usage of GOAL.

Platfam-specific information are documented in the GOAL Platform Manual for the specific
hardware.

Version:0.1 12/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

1.2 How to read this document
Within the document, special recommendations are given marked by two signs:

o Special information gimg hints to avoidcommon pitfallsvhen usinghe software

Special information to prevent malfunction of the software or that require special
attention of the user.

Version:0.1 13/169

7 \ INDUSTRIAL
.a COMMUNICATION
- MIDDLEWARE

2 Installation

- N\ PROFESSIONAL
INDUSTRIAL
I\] COMMUNICATION

The GOAL middleware is delivered as source code with the follaiiegiory structure:

goal
1
A appl
1
|
e bsp
1
1
|
PR ext
1
1
|
PR goal
1
1
|
L goal_media
:
b plat
1
1
roomem projects
1
1
|
PRI protos
1
|
L-m-mmmm- o tools

AN
hardware-independent application

AN
board support packages

AN

external software components of third parties

AN

GOAL core components

AN

media layer between hardware-dependent and
hardware-independent components

hardware-dependent components

projects as connectors of the GOAL componen

AN

GOAL extension modules such as protocol stack
and libraries

GOAL development tools

Figure2: GOAL directory structure

All descriptions in the manuals refer to this directory structure.

Version:0.1

14/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

2.1 Applications (appl)

The directory appl can contain varioagplications, se€&igure3. The user can add own
applicationspecific files to each application.

goal appl application group application 1

application n

application x

Figure3: structure of thedirectory appl

The code of the applications shall be hardwardependent in order to exchange the platform
without changes on the applicatioApplicationspecific functions depending on the hardware
shall be connected to the hardware platform via media interfaces aedianadapters.
Applicationspecific functions can use the GOAL core mod#ablic declarations and definitions
of all GOAL

core modules are available by including the header file goal_includes.h.

¢ KS I LILXgbabdppl 0021¢template belongs to the scope of the standard delivery and
provides a template for own applications.

2.2 Platform (plat)

The directory plat represents the hardware platfoand is divided in parts for architecture, boards
and drivers according to the following structure:

Version:0.1 15169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

‘ goal H plat H arch H architecture 1 I

4{ board H manufacturer 1 H board 1]

4‘ manufacturer n H board 1 I

H hardware type 1 H manufacturer 1 H driver 1 ‘

4‘ manufacturer n H driver 1 I

4‘ hardware type n H hardware sub-type H manufacturer 1 H driver 1 I
4' manufacturer 2 H driver 1 I
4[hardware sub-type H manufacturer 1]—[driver 1 l

Figure4: structure of the directory plat

:

Details to special platforms are documented in the GOAL Platform Manual fepéuific
platform.

2.3 Projects (projects)

The directory projects are designed to takehe compiler projects, which connect all necessary
GOAL components including the application. The recommended structure of the directory projects
is shown irFigure5.

Version:0.1 16/169

INDUSTRIAL PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

‘ goal }7 projects project group project 1
projectn
project x

Figure5: structure of the directory projects

Version:0.1 17/169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

3 GOAL model

GOALis designed for the usagm
i singlecore ormulti-core systems
1 systems withan operating systen in single or multithreaded design
1 embedded systems without an operating system

Figure6 showsthe relationship between the GOAL components.

Version:0.1 18/169

7 N INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

Legend

C] hardware-dependent GOAL component

| |
| | . hardware-independent GOAL component
| |

| |

—— application uses MA directly
GOAL extension modules 8:] —— submodule uses MA directly
— submodule uses Ml
—— application uses Ml

— availability of GOAL modules

GOAL media

GOAL platform @

architecture g] ’ ‘ board 8:] ’ ‘ driver 8:] ’ z __
I~
Jj

bls

() bus
L)
network S:]

Figure6: GOAL model

The colored arrows demonstrate different possibilities to apply G&d#iponents.

GOAL defines several types of components with a specific functionality:

3.1 GOAL core

The GOAL core modules provide basic middleware functionality as memory handling, timers, tasks,

Version:0.1 19/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

list etc. Those modules can be used from all GOAL components and from the application.

3.2 GOAL media adapter

Media adapter define an interface for drivers. Drivéan GOAL create a media adapter during
registration.Upper layers use drivers through this unified interface, thus drivers and platforms are
replaceable. Media adapters do not implement any additional logic, only provide a generic
interface.

3.3 GOAL media ierface

Media interfaces implement functionality based on media adapters or other media interfaces. This
functionality may be a filesystem, an RPC implementation or even a communication stack. Media
interfaces can be used by applications or other GOALpooents.

3.4 GOAL extension modules

GOAL extension modules are additional software components, that implement application
functions based on goal. These are for example:
-/ 2YYdzyAOIFI A2y ail Ola o0¢/tkLtX twhCLb9¢x 90r
- GOAL firewall
- GOAlog emitter
- GOAL Device Detection
- GOAL Web Server

3.5 GOAL architectures

These modules implent the architecture adaption layer between GOAL and the actual targets.
Therethe platform specific parts of GOAL core module functionality are implemented.

3.6 GOAL boats

A board represents an actual hardware implementation of a CPU with additional peripherals and
connectors, e.g. a development board. The code within this board file initializes peripherals and
registers used drivers.

3.7 GOAL drivers

Drivers implement hardware access and provide the functionality threugledia adapter to
other layers of the stack.

Version:0.1 20/169

INDUSTRIAL
.a COMMUNICATION
MIDDLEWARE

4 GOAL state machine

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

The GOAL system providestate machindor system and application startup and shutdown,
simplified shown irFigure?7. The state machine is managed by the G@ét modulemain.

start

8

4 GOAL|[FSA_INIT N\
1
C GOAL_FSA_INIT_APFD
2
[GOAL_FSA_INIT_GOAL_Iﬁ
g
EOAL_FSA_INIT_APPL_SET P
\ Y 5
@i GOAL_FSA_OPERATI@
4\[/ 6
C GOAL_FSA_FINISH)
7
&S
end
Figure7: GOAL state machine
GOAL state GOAL sulstate Action(s)

GOALFSA_INIT

GOAL_FSA_INIT_APPL

applicationspecific initialization before
GOAlLcomponentsare initialized

GOAL_FSA_INIT_GOAL

initialization of GOAL ocoponents

Version:0.1

21/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAL state GOAL sulstate Action(s)

including the initialization of the GOAL
platform

GOAL_FSA_INIT_APPL_SEH applicationspecificinitializations
depending on GOAL mmodulesand
configuration of the GOAL system

GOALFSA OPERATI(-- normal operation including thexecution

of loop-controlled functions

GOAL_FSA FINISH | -- halt or reset the GOAL system

Tablel: GOAL states

GOAL Bvent(s)
state
transition
1 automatic transition after powepn or reset
2 automatic transition if application was initialized successful
3 automatic transition if all GOAL components and dipplication was initialized
successful
4 an error occurred during initialization
5 automatic transition if GOAL system was configured
6 asevereerror was occurred duringormal operation
7 GOAL system is halted
8 GOAL system is reset aredstarts again
Table2: GOAL state transitior{seeFigure?)
4.1 GOALDs

GOAL implements a concept@tating and identifyingnstances of objects by IDs. One could
create two instances of a SPI driver, each operating on a different channel. Those two instances
would then be identified by different IDs.

If only one instance ofreobject of specific type is created, the defalidt of GOAL_ID_DEFAULT can
be used. This ID can be reused for different types (e.g. for a driver and for a Media Interface), since
they are directly realted to thebject type.

Beside that each software component uses different IDs for identificationggiing. Those IDs are
defined in goal/goal_id.h. Here is an excerpt:

#define
#define
#define
#define
#define
#define
#define
#define
#define

Version:0.1

GOAL_ID_DEFAULT (0)
GOAL_ID_BM (1)
GOAL_ID_CM (2)
GOAL_ID_CTC (3)
GOAL_ID_ETH (4)
GOAL_ID_LIST (5)
GOAL_ID_LOCK (6)
GOAL_ID_LOG (7)
GOAL_ID_MAIN (8)

22/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

#define GOAL_ID_MEM (9)

#define GOAL_ID_MI (10)

#define GOAL_ID_MA (11)

#define GOAL_ID_NET (12)

#define GOAL_ID_REG (13)

#define GOAL_ID_RPC (14)

#define GOAL_ID_TGT (15)

#define GOAL_ID_DRV (16)

#define GOAL_ID_TASK (17) /**< GOAL : Task Management */
#define GOAL_ID_TMR (18) [**< GOAL : Timer Management */

Codel goal ID list excerpt

4.2 GOALnitialization

All GOAL components are initialized in state GOAL_FSAT N lifitializatiorcovers:
applicationspecific initializations in stat@ OAL_FSA_INIT_APPL,

the embedding of initialization functions in the GOAL initialization process by staging,
the initialization of each GOAL component,

the combination of GOAL components by registrationstate GOAL_FSA_INIT_GOAL
the installation of loopcontrolled processes and

applicationspecific configurations in state GOAL_FSA_INIT_APPL_SETUP.

= =4 4 -8 -8 -9

All necessary services must be created and initialized in the state GOAL_FSA_INIT, because it is only
allowed to allocate memory in this state.

4.2.1 Staging

The GOAL system organizes the initialization procestages GOALlusesfixed stages. Each GOAL
core module has own stages. Some further stages complete the range of Steyeslly there
are two stages for each module:
1 GOAL_STAGE_* PRE: The initialization function shall be executed.gehis@tasents the
start of initidizationof the consideredcomponent
1 GOAL_STAGE_*: The initialization function is finishedstHgs represents the end of
initialization of the considered component.

Each GOAlomponent, alsdhe application can enter callback functioren everystage. The order

of the stages determines the order of execution of the callback functions. It is possible to add more
than one callback function to a stage. The order of execudfadhe callback functioswithin a

single stage is determined by the order efjistration The callback functions are listed in the stage
table, seeFigure8.

Each stage is identified by a stalfiedefined in the enum GOAL_STAGES Ti
<GOAL>oalgoal_main.hThe callback functions with the smallest std@eare executed first.
Platform-specific initializations assigned to the smallesgsttDs, followed by GOAL core modules
and GOAL extension moduleBable3 lists some stages, which are most interesting fiite

Version:0.1 23/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

application point of view.

Jage Description

GOAL_STAGE_TARGET _P| for the initialization ofthe platform

GOAL_STAGE_TARGET | indicate, that the initialization athe platformis ready

GOAL_STAGE_BOARD_PH for additionalinitialization ofthe board

GOAL_STAGE_BOARD indicate, that the initialization ofhe board is ready

GOAL_STAGE_MODULES | for the initialization ofGOALextension modulesr the application

GOAL_STAGE_MODULES | indicate, that the initialization o6OALextension modies or the
applicationis ready

GOAL_STAGE_GOAL_PRH for the lastinitializationstepsin state GOAL_FSA_INIT_GOAL

GOAL_STAGE_GOAL indicate, that the initialization of all GOAL components is ready

Table3: some stagessefulfor applications

Each entry in the stage table containstagelD, the direction typend a callback function. There
are two direction types:
1 GOAL_STAGE_INIT: These stage table entries are processed in stateSA2OMIT GOAL
1 GOAL_STAGE_SHUTDOWi direction type is reserved for fuauuse.

stage-ID / direction type / callback function Iﬁ
order of functions during ;
GOAL_initialization '
v
' :
\ '
' '
' n
1.1

stage-IDs: enum GOAL STAGEY T stage table

- > ‘
GOAL_STAGE_TARGET PRE_|D 1 12 GOAL_STAGE_TARGET_PRE / GOAL_STAGE_INIT/ fct_targetinitPaft1()
|
|
|
|
|
n.l :
r—-———-—-—- T——— = GOAL_STAGE_GOAL / GOAL_STAGE_INIT/ fct_targetGoalReady(]
|
|
|
L= GOAL_STAGE_TARGET_PRE / GOAL_STAGE_INIT / fct_targetinitPaft2()

GOAL_STAGE_GOALn [[—————

Figure8: function order atgtaging

At the beginning of state GOAL_FSA_INIT_GOAL the GOAL core modules and GOAL extension

Version:0.1 24/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

modules register their callback functions. After registration the callback functionsxaited.

For the example ifrigure8 the initialization functions are called in the following order:
1.1fct_targetinitPart1()
1.2fct_targetinitPart2()
X
n.1 fct_targetGoalReady()

4.2.2 Platform API

During initialization GOAL requires the function goal_targetinitPre() to initialize the used platform:

Prototype GOAL_STATUS_T goal_targetinitPre(void)

Description Thisindication function initializes the complete platform and is called in the sté
GOAL_FSA_INIT_GOAL in stage GOAL_STAGE_TARGET_PRE.

Parameters None

Return values | GOAL return status, see chap&B

Category Mandatory

4.2.3 Registration of media interfaces, media adapters and drivers

GOAL allows to combine various hardware and software components with eachtkerarious
components ag connected to each other by a registration.

Theplatform-specific driverare connectedo platform-independent media adapter@dA). Media
adapters represent a generic driver interfadéedia adapters can be connected to media
interfaces(MI). Media interfaces represent a generic connection interface between a media
adapter and a special higher layer module.

Examplel: A GOAL device shatbre parameters in the nonvolatile memofVM) The parameters are split in
different blocks The GOAL device usbe Synergy S7latform. The GOAL device has to initialize and register the
following GOAL components:

1. Initialize theGOALdriver for theaccess to thé&VMfor the Synergy S7lgtform. TheGOAL
driver handles the accesses to the memory hardware

2. The GOAL driveegisters to theMA for the nonvolatile storage itselheMA for the
nonvolatile storage provides a generic interface for accesses to the memory hardware.

3. The different memory blocks are maged about various memory regions. Tiiéfor the
nonvolatile storage provides the management of memory regions and is added to the GOAL
project. TheMl relates tothe MA for the nonvolatile storagby aregistiation.

4. The application specifies a memory region for each parameter block. Each region is
registered to theMl for the nonvolatile storage

The media interfaceand the media adapters can be identified by Ml or MAquelDQ dhe M
IDs and MADs have separate lists and are independent from each ofh@ing registration a

Version:0.1 25/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

unique handle is created for each lormally the registration is done in stage
GOAL_STAGEARGETPREN state GOAL_FSA_INIT_GOAL

Example2: The registration of the media interface, media adapter and driver are showd@irC over SPI

1. DefineaMAIDanda ML 5 \WoAlplxt\board..\goal target board.for use default ID
GOAL_ID_DEFAULT.

2. Register the SPIdriverinDh! [Bk LX I G k02 F NRk Xk 3I2F € ¢d I NBSG
adapter (MA):

/* register SPI driver */

res = goal_drvSpiSynReg (GOAL_ID_DEFAULT, 0);

if (GOAL_RES ER(res)){
goal_logErr (“failed to register Synergy SPI driver”);
return res;

3. Register theICTC Ml with ID to the SPI MA as a parameter. The created MI will also utilize
the ID GOAL_ID_DEFAULT. Since SPI MA and MCTC MI are of different type, this is ok.

/* register a new MCTC MI */

res = goal_miMctcSpiReg (
GOAL_ID_DEFAULT,
GOAL_ID_DEFAULT,
mpMiDmRead,
mpMiDmWrite);

if (GOAL_RES_ER(Res)) {
goal_loglnfo ("Unable to reg Ml SPI");
return res;

}

Depending on the media type and tdever the registration functions can require different pa-
rameters.

Some drivers generate the M® according to an implemented rule automatically. The rule is
documented

in the suitable GOAL PlatforManual

4.2.4 Applicationspecific indication function fornitialization

Applicationspecific initializations are implemented about the indication function appl_init()
located in <GOAL>/ appl/.../goal_appl.c normally:

Prototype GOAL_STATUS _T appl_init (void)

Description This indication function allows to include applicatispecific initialization steps
before the GOAL core modules or GOAL extension modules are initialized. G

Version:0.1 26/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

core modules must not be used. This indication function is called by GOAL
automatically in ste GOAL_FSA_INIT_APPL_INIT.

Parameters None

Return values | GOAL return status, see chap&B

Category Optional
If appl_init() does not exist ithe application, GOAL uses an empty default
function.

4.2.5 Install loop-controlled processes

Functiors with low priority can b&xecutedlioop-controlledin the state GOAL_FSA_ OPERATION
GOAL providea loop mechanism, called GOAL loop. Therdladollowing possibilitieso install
applicationspecific loop functiong the GOAL loap

1 implementation of the indication function appl_loop() or

1 append the functions, which shall be calledp-controlled, to the list of loop functions

limited in execution time to minimize the effect on other loop functions. Longer

g Loop functions run in the main loop context of GOAL, thus these functions shoulc
processes should be split into muledequential steps.

4.2.5.1 Implementation of gopl_loop()

GOAL provides the indication function appl_loop() for calling applicapecific functionsn the
GOAL loop

Prototype void appl_loop (void)

Description This indication function allows txecute applicatiorspecificfunctions loop
controlled. This indication function is called in the GOAL loop in state
GOAL_FSA OPERATION.

Parameters None

Return values | None

Category optional
If appl_loop() does nagxist in the application, GOAL uses an empty default
function.

Example3: The function applUpdate() shall be called lemmtrolled. This function is implementédthe indication
function appl_loop().

void appl_loop (void){
applUpdate ();

Code2 appl_loop example usage

Version:0.1 27/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

4.2.5.2 Function list

GOAL provides a further possibility taeigrate applicatiorspecific functionsn the GOAL loop.
GOAL manages all functions, which shall be exeantdte GOAL loom state
GOALFSAOPERATIO&bout a function list. A function can be added to the loop function list by
function goal_mainLoopReg8ach loop function must have the followifgnction prototype:

void loopFunction (
void
);

Theloop function listis created in state GOAESA_INITAt the beginning of state
GOALESA_INIT_APRe loop function list is emptylhe application can register loop funats
The GOAL core modules and G@Rtiensionmodules register their loop functions in state
GOALFSA_INIT_GOAL

The order of execution of the loop functions depends on the order of registration. The first
registered loop function is executed at first.

Examplet: The function applUserLoop() shall be executed looptrolled. The registration is made in appl_init().
void ,appIUserLoop (void) {
} e
GOAL_STATUS_Tappl_init (void) {
GOAL_STATUS T res;

res = goal_mainLoopReg (applUserLoop);

return res;

}

Exampleb: The function applDeviceLoop() shall be executed loaptrolled. The registration is made in appl_setup().
void ’appIDeviceLoop (void) {
} e
GOAL_STATUS Tappl_setup (void) {
GOAL_STATUS T res;

res = goal_mainLoopReg (applDevicelLoop);

return res;

}

Exampleb: The function apgtund) shall be executed loepontrolled. The registration is madkiringinitialization.In
Exampler the functionapplActivate() is registered ardlled during initialization. The loop function is registered in
this initialization function.

void applFunc (void){
é
}
GOAL_STATUS_TapplActivate (void) {

Version:0.1 28/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAL_STATUS T res;
res = goal_mainLoopReg (applFunc);

return res;

}
4.2.6 Applicationspecific indication function for configuration
After initialization the application has the possibility to configure the GOAL system. The GOAL

system expects the configuration in tiredication function appl_setup() located in
X\goahapph..\goal_appl.c normally:

Prototype GOAL_STATUS_T appl_setup (void)

Description This indication function allows to configure the GOAL system after initializatig
This indicatio function is called by GOAL automatically in state
GOAL_FSA_INIT_APPL_SETUP.

Parameters None

Return values | GOAL return status, see chap&B

Category Optional
If appl_setup() does not exist in the application, GOAL uses an empty defauli
function.

4.2.7 Integration of user functions in staging system

The stage table is created in state GOAL_FSA_INIT. At the beginning of state GOAL_FSA INIT_APPL
the stage table is empty. Its entries are registered in the indication function appl_init() or by the

GOAL core modules and GOAleaston modules in state GOAL_FSA_INIT_GOAL. The registration

is made by function goal_mainStageReBfch callback function must have the following function
prototype:

GOAL_STATUS_TcallbackFunction (
void
)i

All staged initializatiofunctions are executed after registration in the state GOAL_FSA_INIT_GOAL.

Exampler: At the end of the initialization the applicatiespecific function applActivate() shall be called. applActivate()
is assigned to stage GOALAGE_GOAL. A new entry for the stage table is created about the declaration of
stageReady. This new entry is appended to the stage table by function goal_mainStageReg(). The registration is located
in the indication function appl_init().

GOAL_STAGE_HANDLER_T stageReady; /* create new entry for stage table */
GOAL’_STATUS_TappIActivate (void) {
} é
GOAL_STATUS Tappl_init (void) {
GOAL_STATUS T res; /* GOAL return value */

Version:0.1 29/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

res = goal_mainStageReg (GOAL_STAGE_GOAL, &st ageReady, GOAL_STAGE_INIT,
applActivate);

return res;

A GOAL evaluates the return value of staging functions. If such a function returns &
error, the goal initialization will fail.

4.3 GOAL operation

In the state GOALFSA OPERATI@N GOAL system executesks, interrupt routinesand loop
controlledfunctions. The loopcontrolledfunctions are executed by calling the function goal_loop()
in the main() function or in a taskgularlywithout a valid cycle itne. In goal_loop(}he function
appl_loop() and/otthe listedloop functions are executed. The registration of loop functions is
described in chapte4.2.4

4.4 GOAL finish

4.4.1 Halt

The GOAL system is stopped. The halt behavior is plagpauific and described in the suitable
GOAL Platform Manual. GOAL requires the indication function goal_targgtiksgdlatform API
function:

Prototype void goal_targetHalt(void)

Description This indication function stops the program.

Parameters None

Return values | None

Category Mandatory

4.4.2 Reset

The GOAL system is reset and starts addin.reset behavior is platforspecific and described in
the suitable GOAL Platform Manual. GOAL requiresnthieationfunction goal_targetReset() as
platform API function:

Prototype void goal_targetReset(void)

Description This indication function resets th@atform and restarts the program.

Parameters none

Return values | none

Category mandatory

Version:0.1 30/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5 GOALcore moduleqgoal)

The directory goal contairthe GOALcore modules. One source anohe header files exist for each
GOAlLcoremodule.All GOAlcoremodulesshall beintegrated in the GOAL systeie. all GOAL
coremodules are added to the compil@roject. The functions are described in detail in the GOAL
Reference Manual.

The header filgoal_includes.lsummarizes all header files of the GQake modules The
application includes all puilinformation of the GOAtore modules with this header file.

GOAL core modules are configured by comgiiefines and/or configuration variableshe
interface for the configuration by variablesin<GOAL>/goal/cm

Some GOAL core modulpvide a command line interfac&@he extensions for the handling via
the command line are saved in additional filgedl_cli.*). This chapter only describes the
supporied commandsThe command line interfadeself represents aGOAL extensiomodule and
is documented irchapter7.2

5.1 Heap Memory Allocator (goal_alloc)

This GOAtoremodule provides functions to allocate memoHowever GOAL considers the
inability of embedded systems to manage memory fragmentation, thus memory allocation is
limited to the initialization phasei.e.it is not possible to allocater free memoryduring normal
operation The functions of théMemory Allocatorare only allowedn the state GOAL_FSA_INIT.

GOAL memory allocation is limited to startup of the application. This originates in
inability to handle memory fragmentation in embedded systems.

The memory allocator uses a statically defined HEAP, which size is configUitadlmemoryis

allocated on base of the alignmespecified by theeompilerdefine
GOAL_TARGET_MEM_ALIGN. N&Bpecial alignment isqaeired, the Memory Allocator

supplies special functions to set the desired alignnfenthe allocation of memoryThe name of
GKS&S FdzyOiirzya KI @S (KScAg@RIFTAE 4! tAdyér So3

TheMemoryAllocator allows to check, thainly the allocated memory range is useby a
boundary checker. THeoundarycheckeradds bytes around the allocated memory range and fills
the bytes with special pattem The application can checkatthe patternsare unchangedby

calling the function goal_memCheck{he boundary checker cée activated or deactivated by
the compilerdefine GOAL_CONFIG_DEBUG_MEM_FEXGEBRall only be used during
development.

Version:0.1 31/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

This GOAL core module provides no-@iviables and no command line interface.

GOAL files:
goal_alloc.[h,c]

example:
not available

5.1.1 Configuration

The following compiledefines are available to configure tivdemory Allocator:

o Using the stdlib memory allocator is a debugging features and may lead to additit
code being linked to the application, thus requiring more reses.

GOAL_CONFIG_MM_EXT:

0: use goal memory alocatddefault)

1: use stdlib alloc functionality (only for debugg)n
GOAL_TARGET_MEM_ALIGN_NET:

alignment for network transfers, see chap@&#

GOAL_CONFIG_HEAP_SIZE:
size of the heap memory, see chap&b

The following compiledefines are available for debug purposes:

GOAL_CONFIG_DEBUG_MEM_FENCES:
0: memory boundary checker is disabled (default)
1: memory boundarghecker is enabled

GOAL_CONFIG_DEBHEAP_USAGE:
0: debug feature disabled
1: log actual heap usage per component

5.1.2 Implementation guidelines

5.1.2.1 Allocate a memory range

1. Create a handlewhich is directed to the allocated memaapnd allocate memory

void *pMem= NULL;
GOAL_STATUS T res;

res = goal_memCalloc (&pMem, 2048);

Version:0.1 32/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

It is important to utilize the function as shown. Creating a pointer poinérable
(void *ppMem) and passing this to the function as an argument
632FEWYSY/ Ef200LIJaSYsS X0 gAtft FlAfa

5.2 Bitmap handling(goal_bm)

This GOAtoremodule providesa function to allocate memoryor a bitfield. Single bits of the bit
field can be taken from the biteld by afunction. Thefunctioncan use the bit. If the bit is not
more needed thdunction has to return the bit to the bifield, seeFigure9. If a bit is used,
anotherfunction cannot take this bit from the bitield. The bitfield must be allocated in state
GOAL_FSA _INIT.

take bit from
bit-field

give bit back to
the bit-field

|
|
|
|
|
|
|
|
L
I e
| bit-field
I

|

Vv

bit 0 bit n

Figure9: bitmaphandling

Locking mechanisms are not implemented for the functions of this GOw#lmodule. Ifthe
lockingof the bit-field isnecessary, the locking must be done by the caller.

This GOAL core module provides no-Giviables and no command limeterface.

GOAL files:
goal_bm.[h,c]

example:
not available

Version:0.1 33/169

7 N INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

5.2.1 Implementation guidelines

5.2.1.1 Create a bitfield with a lock

/* Create a handle to the bit - field. */
GOAL_BM_T*pFlags = NULL;

/* Create a handle for the lock to the bit - field. */
GOAL_LOCK_T* pLockFlags;

/* Create a binary lock to avoid multiple accesses to the bit - field. A binary lock
has the value range [0,1]. */

GOAL_STATUS T res; /* GOAL return value */

res = goal_lockCreate (GOAL_LOCK_BINARY, &pLockFlags, 0, 1,GOAL_ID_BM);

/* Allocate the memory for the bit - field in state GOAL_FSA_INIT for 16 bits. */

if (GOAL_RES_Offes)) {
res = goal bmAlloc (&pFlags, 16);
}

5.2.1.2 Take a hit from the biifield

GOAL_STATUS_T res; /* GOAL return status */
uint32_t bitNum; /* number of the bit */

/* Set the lock. If the lock is not available, wait on the lock forever. */
res = goal lockGet (pLockFlags, GOAL_LOCK_INFINITE);

[* Take the next available bit from the bit - field. */
if (GOAL_RES_Offes)) { * lock is set successful */
res = goal bmBitReq (pFlags, &bitNum);

I* Reset the lock. */
goal_lockPut (pLockFlags);

5.2.1.3 Return a bit to the bitfield

GOAL_STATUS T res; I* GOAL return status */

/* Set the lock. If the lock is n ot available, wait on the lock forever. */
res = goal lockGet (pLockFlags, GOAL_LOCK_INFINITE);

/* Return the bit to the bit - field. */
if (GOAL_RES_Offes)) { * lock is set successful */
res = goal_bmBitRel (pFlags, bitNum);

/* Reset the lock. */
goal_lockPut (pLockFlags);

5.3 CGonfiguration Manage (goal_cn)

The Configuration Managesrovidesan interfaceto handle configuratiorvariablesduringruntime. If aNVMis
available the configuration variablesan alscbe managedhonvolatile.Besides providing runtime configuration data
the CM also provies an interface foretibevice Manger Tool/ GOAL Manager Tool.

Version:0.1 34/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The Configuration Manager organizes ttanfigurationdata modulewise, called CMmodule Each
CMmodule contains a list of configuration variablealled CMvariables seeFigurelO.

NVS @ RAM 8:]
CM-variable CM-variable
1 1
CM-module 1 CM-module 1

oal_cmSetVarValue
< - EEETTT - !

— — |
CM-variable CM-variable |
goal_cmSave()
n s - — - = = Y — — — o n |
application
______ goal cmboad) _ _ _ |
CM-variable CM-variable
1 1 |
|
goal_cmGetVarByld() |
_______________ -
CM-module n CM-module n
CM-variable CM-variable
2 n

FigurelO: data structure and data flow of the Configuration Manager

EachCMvariable isuniquelyidentified bya CM-moduleID and aCMvariablelD.The
Configuration Manager allows to handienfiguration variablesf the CMvariabledata types see
chapter8.2 The CMmodules and CMariables must be installed in state GOAL_FSA_INIT

The configuration data in thVMare extended by a CROm to detect data errors.HE applied
CR&algorithm is FletcheB2 /Fletcher/.

The Configuration ManageiifferentiatesbetweenCMvariables withtemporary andvolatile
values.CMvariables can be marked as temporary or stable by function goal_cmSetVarValue().
Temporary CMariables can be manipulatedter loading fromthe NVMviaa callback function.
Chapter5.3.2describes all callback functions of therfiguration Manager

If there are changes at the interfacé the Configuration Manager to thdVMor changes at the
variable lisf the configuration data are not loaded froNWM. Changeon interfaces are
identifiable by the version number GOAL_CM_VERSION of the Configuration Manager in the file

..\goakgoal_cm.h.

Version:0.1 35/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

It is possible to assign a name to each-@vlable. This possibilithustbe activated/deactivated
by the compilerdefine GOAL_CM_NAMES.

The Configuration Manager can be controlled via the command line interface, see chapter

GOAL files:
goal_cm.[h,¢]goal_cm_id.hgoal cm_t.h, goal_cm_cli.c, cm/goal_cm_cm.[h,c]

example:
X\goakapph00410_goalcfg_demo

5.3.1 Configuration

5.3.1.1 Compilerdefines

The following compiledefines are available to configure the Configuration Manager:
GOAL_CM_NAMES:

0: CMmodules andCMvariables are identified by ID numbers (default)
1: CMmodules andCMvariables are identified by ID numbers and names

5.3.1.2 CMvariables

Thefollowing CMvariablesare avdablefor the Configuration Manager

CM-Module-ID GOAL_ID_CM

CMvariablelD 0

CMvariable name | CM_CM_VARSAVE

Description Each writing of any value to this Gkriable stores all CMariables in the
NVM.

CM data type GOAL_CM_UINTS8

Sze 1 byte

Access -

Default value from NVS or O

5.3.2 Callback functions
The Configuration Manager supports two kinds of callldaoktions:

1 callback functions, which must be specified during implementation and
1 callback functions, which can be specified during runtime

Version:0.1 36/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.3.2.1 CMvariablesbased

During implementation callback functions

9 for value validation and

1 toinform the application abat value changes
can be specifietbr eachCMvariable The specification of the callback functions is described in
chapter5.3.3 The callback functionthemselvesare described in the following tables. The name
of the callback functionare applicationspecific.

Prototype GOAL_STATUS_TcbValidateFunc(uint32_t cmModId, uint32_t
cmVarld, GOAL_CM_VAR_T *pVar, void *pNewData, uint32_t

size)
Description | This callback function is used to validate new valueshi®ispecifiedCM-variable.
Darameters | cmModld number of the CMmodule

cmVarld number of the CMvariable

pVar pointer to the entry in the CMariable list for the CM

variable

pNewData new specified value for the Ghariable

size size of the CMariable in byte
Return GOAL return status, see chap&B

values

Category optional
If a callback function isot available, specify NULL in the @&ftiable list.

Registration | by compilation

Prototype GOAL_STATUS_T doChangedFunc(uint32_t cmModld, uint32_t
cmVarld, GOAL_CM_VAR_T *pVar)

Description | This callback function is used to inform other components about the changing
the value of the CMvariable.

Parameters | cmModid number of the CMmodule
cmVarld number of the CMvariable
pVar pointer to the entry in the CMariable list for the CM
variable
Return GOAL return status, see chap&B
values

Category optional
If a callback function isot available, specify NULL in the @&tiable list.

Registration | by compilation

Version:0.1 37/169

geal

COMMUNICATION
MIDDLEWARE

INDUSTRIAL

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

5.3.2.2 CMmodulebased

During runtime callback functions
1 for customerspecific loading o€EM-variables fronthe NVM,
9 for customerspecific saving adCMvariables tahe NVM,
i to changevaluesfor temporaryCMvariablesafter loading fromthe NVMby function
goal_cmLoad()
can be configuredor each CMmoduleby function goal_cmAddModule(Jhe callback functions
are described in the following tables. The naoéthe callback functionare applicationspecific.

Prototype GOAL_STATUS_TcbL oadFunc(uint32_t cmModld, uint32_t
cmVarld, GOAL_CM_VAR_T *pVar, uint32_t *pSize)
Description | This callback function is used to load a-Zafiables fronNVM customerspecific.
Parameters | cmModld number of the CMmodule
cmVarld number of the CMvariable
pVar pointer to the entry in the CMariable list for the CM
variable
pSize returns thecurrent size of the CMariablein byte
Return GOAL return status, see chap&B
values
Category optional
If not available, specify NULLthe call of goal_cmAddModule().
Registration | during runtime about function goal_cmAddModule()
Prototype GOAL_STATUS_TcbSaveFunc(uint32_t cmModld, uint32_t
cmVarld, GOAL_CM_VAR_T *pVar)
Description | This callback function is usedgavea CMvariablesn the NVM customerspecific.
Parameters | cmModld number of the CMmodule
cmVarld number of the CMvariable
pVar pointer to the entry in the CMariable list for the CM
variable
pSize returns the current size of the GMariablein byte
Return GOAL return status, see chap&B
values
Category optional
If not available, specify NULL in the call of goal_cmAddModule().
Registration | during runtime about function goal_cmAddModule()
Prototype GOAL_STATUS_TcbT mpsetFunc(uint32_t cmModlId, uint32_t
cmVarld, GOAL_CM_VAR_T *pVar, uint32_t *pNewSize)
Description | This callback function allows to overwrite the value of the temporaryv@hble
Version:0.1 38/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

after loading fromthe NVM. If no callback function is specified, GOAL uses the
default function goal_cmTmpSet() and clears the value to 0.

Parameters | cmModld number ofthe CMmodule
cmVarld number of the CMvariable
pVar pointer to the entry in the CMariable list for the CM
variable
pNewsSize returns the current size of the Gvariablein byte,
goal_cmTmpSet() returns O
Return GOAL return status, see chap&B
values

Category optional
If not available, specify NULL in the call of goal_cmAddModule().

Registration | duringruntime about function goal_cmAddModule()

5.3.3 Creating a CMmodule and a variable list

The Configuration Manager provides a scheme for the creati@gnCMmodule anda list of CM
variables It is recommended to use this scheme &mplicationspecific CMmodules too.

1. For each CMnodule a uniqgue number is necessary.

Example:
#define APPL_CM_MOD_IDOx00EE0000

2. TheCMvariables, which shall be availabi@the Configuration Manager, must be specified
and assigned to &MvariableID. Because thEMvariablelD is also used as list index, the
counting has to start with 0 and must be consecutively. Create a enum f@NheariableIDs
to access the configuration variable by a symbolic name

Example:

typedef enum {
APPL_CM_VAR_1,
APPL_CM_VAR2

} APPL_CM_VARS_ID_T;

3. TheCMvariables are listed with the following properties:

CMvariablelD,

CMvariable data typesf the CMvariable

maximal size of th€Mvariable in byte

a callback function for the validation of the written vajue

a callback function to inform the application about the change of the varfai@dueand
the name of theCMvariable if naming is switched on by the comp#gefine
GOAL_CM_NAMES

Create a table with the properties for &Mvariablesassigned to the CMhodule Each line of

= =4 -4 -8 -8 -2

Version:0.1 39/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

the table represent®ne CMvariable according to the structure GOAL_CM_VARENTRY_T. This
structure contains the properties of théMvariable and pointer references for the internal
handling. Please set the internal pointer referent@®ULLIf no callbacKunctions are

available for validation aridr change reports, set the references also to NULL.

ExampleB: for GOAL_CM_NAMES with callbackfunctions

static GOAL_CM_VARENTRY_T applCmVars[] = { \

{APPL_CM_VAR_1, GOAL_CM_UINTS8, 1, NULL, applValidateFct, applChangeFct, NULL,
NULL

h

{APPL_CM_VAR_2, GOAL_CM_UINT32, 4, NULL, applValidateFct, applChangeFct, NULL,
NULL

}

Example9: for GOAL_CM_NAMES = 0 withouttmadkfunctions

static GOAL_CM_VARENTRY_T applCmVars[] = { \
{APPL_CM_VAR_1, GOAL_CM_UINT8, 1, NULL NULL NULL NULL NULL},
{APPL_CM_VAR_2, GOAL_CM_UINT32, 4, NULL, NULL NULL NULL NULL}
}

4. Now the created CMnodule can be integrated in the code as described in chap®6.1

5.3.4 Virtual Variables

GOAL CM supports virtual variables, which only are stored in memory and not written to the non
volatile storage.

Virtual variables are created in stage GOAL_STAGE_CM_MOD_ADD using the function
goal_cmRegVarVirtual.

Prototype GOAL_STATUS_T goal_ cmRegVarVirtual(uint32_t modid,
unt32_t varld, GOAL_CM_DATATYPE_T type, uint32_t
sizeMax, goal_cm_validate validate, goal_cm_changed

changed);

Description Register a virtual cm variable

Parameters modId Module ID
varld Variable ID
type CM datatype
sizeMax Maximum size of variable
goal_cm_validate| Validation callback or NULL
goal_cm_change(Modification callback or NULL

Return values | GOAL return status, see chap&B

Category Optional

Condition -

/* add virtual variables */

Version:0.1 40/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

if (GOAL_RES_Offes)) {

res = goal_cmRegVarVirtual (
2, [* module Id */
CM_CM_VAR_SAVE, [* variable Id */
GOAL_CM_UINTS, I* type */
1, I* size */
NULL, /* validation callback */
goal_cmCmSave /* modification callback*/

Code3 create virtual cm variable

5.3.5 Command line interface

Command | cm set <modld> <varld> <newVal>

Description | Sets the value of an existing variable identified by@é¢module-ID andCM-
variablelD in the Configuration Manager.

Parameter | <modld> numberof the CMmodule
<varld> numberof the CMvariable within the CMmodule, value
range 00000001k FFFFFFFFh
<newVal> new value
Integer values are entered with an optional sign. String
@t dzSa 0 S3AA ycharagtdk SY R 6 A G F

Command | cm show [<mod | d><var | d>]

Description | Shows thevalue of thevariable identified byhe CM-module-ID andCM-variable
id or allCMvariables. If no IDs are given@Ntvariables of all Chinodules are
printed out to the command line interface.

Parameter | <modld> numberof the CMmodule value range 0000000kh
FFFAFFFh
<varld> numberof the CMvariable within the CMmodule value
range 00000001k FFFFFFFFh

5.3.6 Implementation guidelines

5.3.6.1 Creating a new CMnodule

1. Specify a unigu€MmodulelD number, see chaptér.3.3
2. Specify the list o€Mvariables, see chaptér.3.3

3. Create a variable for the Gilodule-ID.

GOAL_CM_MODDEF_T cmMod;
cmMod.modld = APPL_CM_MOD_ID;

Version:0.1 41/169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

Register the CM - variables by function goal_cmRegModule() in the state
GOALFSA_INIT_APP L, sta ge GOAL_STAGE_CM_MOD_REG

GOAL_STATUS T res;
res = goal_cmRegModule (applCmVars);

4. In stageGOAL_STAGE_CM_MOD_/AbBdthe CMvariable list to the CMnodule by function
goal_cmAddModule() in the state GOAISA_INIT_APRhAd do not specify callback functions
for customerspecific nonvolatile load and save and the modification of temporary CM
variables after loading frolNVM.

if (GOAL_RES_Offes)) {
res = goal_cmAddModule (&cmMod, applCmVars, NULL, NULL, NULL);
}

Write avalueto a CMvariableby function goal_cmSetVarValuge()

uint32_t val = 0x11223344;
if (GOAL_RES_Offes)) {
res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_2,
(void *)&val, 4, GOAL_FALSE, NULL);
}

5. Readthe valueof a CMvariableaboutfunction goal_cmGetVarByld()

GOAL_CM_VAR_T pEntry;
if (GOAL_RES_Offes)) {
res = goal_cmGetVarByld (APPL_CM_MOD_ID, APPL_CM_VAR_2, &pEntry);
if (GOAL_RES_Offes)) {
val = GOAL_CM_VAR_UINTS3@Entry);
}

}
5.3.6.2 Add a newCMvariable to a CMmodule

1. Add theCMvariable to the variable list, see chap&B.3

2. Create a variable for the GioduleID.

GOAL_CM_MODDEF_T cmMod;
cmMod.modid = APPL_CM_MOD_ID;

3. Reqgister the CMnodule by function goal_cmRegModule() in the state GGSIA INIT_APPL

GOAL_STATUS T res;
res = goal_cmRegModule (applCmVars);

4. Add theCMvariable list to the CMnodule by function goal_cmAddModule() in the state
GOALFESA_INIT_APRAd do not specify callback functions for custormsgecific nonwlatile
load and save and the modification of temporary -@afiables after loading from NVM.

it (GOAL_RES_Offes)) {

Version:0.1 42/169

7 \ INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

res = goal_cmAddModule (&mMod, applCmVars, NULL, NULL NULD;
}

5. Write avalueto a CMvariableby the functiongoal _cmSetVarValue()

uint8_t val = OxA5;
if (GOAL_RES_Offes)) {
res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_1,
(void *)&val, 1, GOAL_FALSE, NULL);
}

6. Readthe valueof a CMvariableby the functiongoal_cmGetVarByld()

GOAL_CM_VAR_T pEntry;
if (GOAL_RES Offes)){
res = goal_cmGetVarByld (APPL_CM_MOD_ID, APPL_CM_VAR_1, &pEntry);
if (GOAL_RES_Offes)) {
val = GOAL_CM_VAR_UINT@Entry);
}
}

5.3.6.3 Load and sav&Mvariablesnonvolatile

1. Create a variable for the Civiodule-ID.

GOAL_CM_MODDEF_T cmMod,;
cmMod.modld = APPL_CM_MOD_ID;

2. Register the CMnodule by function goal_cmRegModule() in the state GGAIA _INIT_APPL

GOAL_STATUS_T res;
res = goal_cmRegModule (applCmVars);

3. Add theCMvariable list to the CMnodule by function goal_cmAddModule() in the state
GOALESA_INIT_APRAOd do not specify callback functions for custormspecific nonvolatile
load and save and the modification of temporary -@Miables after loading from NVM

it (GOAL_RES_Oftes)) {
res = goal_cmAddModule (&mMod, applCmVars, NULL, NULL, NULL;
}
4. Loadall CMvariablesfrom NW by function goal _cmLoad()

if (GOAL_RES_Offes)) {
res = goal_cmlLoad ();
}

5. Write avalueto a CMvariableby the function goal_cmSetVarValue()

uint8_t val = 0xA5;
if (GOAL_RES_Offes)) {
res = goal_cmSetVarValue (APPL_CM_MOD_ID, APPL_CM_VAR_1,
(void *)&val, 1, GOAL_FALSE, NULL);

Version:0.1 43/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

6. Saveall CMvariables nonvolatile by function goal_cmSave()

if (GOAL_RES_Oftes)) {
res = goal_cmSave ();
}

5.4 GenericBhernet Frame Handler (goal_eth)
This GOAtoremodule provides functions teend and receiv&thernetframes seeFigurell.

The Ethernet Frame Handler receivetiernetframes. The frame processing load can be
reduced by activation of the MAC address filtering by the ctempiefine
GOAL_CONFIG_MAC_ADDR_FILTER. Then only all broadcast/multicast and the own unicast
ethernet frames pass the MAC filter and are receividus is only a software filter, which drop
packets not directed to the device.

TheBhernet FameHandler dentifies received ethernet frames on base of the
T MAC address
1 the Ether Type

The values for the Ether Type are standardized in IEEE &4 supports the following Ether
Types:

1 0800h: IP Internet Protocol, version 4 (IPv4)

1 0806h: Address Resolution Protocol (ARP)

1 8100h: VLAN Tag

Other Ether Types are registeres by additional software components, such as the PNIO
communication stack,

TheBhernet Fame Handler accepts all ethernet frames ifelEther Type is set to
GOAL_ETH_ETHERTYPE_ANY.

The kind of the identification is configured by function goal_ethProtoAdd() or
goal_ethProtoAddPos().

goal_eth @

TCP/IP-stack 8:] goal_net 3:] application @
ethemnet frame channel 1
ethernet buﬂ

ethemet frame channel 2

Figurell: ethernet frame handler as part of the GOAL system

Version:0.1 44/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The ethernet frames can be dividedframes withlow and high priorityThe priority is also
specified by function goal_ethProtoAdd() or goal_ethProtoAddPodkEtype of icentification and
the priority determine the handling of received frameseeFigurel2.

received ethernet frame

-~
- ~
- ~—

identified by MAC address ﬁ‘ identified by Ether Type
4 ~ 7
s N P N
- S - e
/[2\
high priority low priority high priority

T T P 7 ‘I N
	_	N N
	Ve	
	YA V 2\	
	all ethernet frames accepted " I unspecified Ether	
	(GOAL_ETH_ETHERTYPE_ANY)	Specified Ether Typ Type
	7	
	\ / \	
	\ / \	

QP

RX interrupt-
contolled, callback
is executed

RX interrupt-
controlled, callback
is executed

RX loop-controlled,
callback is
executed

RX loop-controlled,
callback is
executed

Figurel2: RXethernetframe handling

During the interruptcontrolled receipt the callback function specified by function
goal_ethProtoAdd() or goal_ethProtoAddPos() is caftedediately

For the loopcontrolled handling the received message is stored internal and the callback function
is called in the GOAL loophe Ethernet Frame handler registers flaaction goal_ethLoop(for

this purpose

Ethernet controllers provide more or less gdslities to analyze the ethernet communicatiby
counting of events represented as statistics, see chap#9

The generi&hernet Fame Handler can be camolled via the command line interface, see chapte
5.4.9

GOAL files:
goal_eth.[h,c]

example:

Version:0.1 45/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

not available

5.4.1 Configuration

5.4.1.1 Compilerdefines
The following compiledefines are available to configure the gendtisernet FameHandler:

GOAL_CONFIG_ETHERNET:
0: generiddhernet Fame Handler is disabled (default)
1: genericBhernet FameHandler is enabled

GOAL_TARGET_ETH_PORT_COUNT:
number of external ports (defaulplatform-specific)

GOAL_CONFIG_MAC_ADDR_FILTER:
0: MAC address filtering disabled (default)
1: MAC addressltering enabled

GOAL_ETH_NAMES:
0: names for ethernet commands are not available (default)
1: names for ethernet command available

GOAL_CONFIG_ETH_STATS
0: supportof ethernet statisticss disabled(default)
1: support of ethernet statistics is enabled

GOAL_CONFIG_ETH_STATS_NAME
0: short description of ethernet statistic is not available (default)
1: short description of etheret statistics is available

GOAL_CONFIG_TDMA:
0: time division multiple access disabled (default)
1: time division multiple access enabled

The following compiledefines are available for debug purposes:

GOAL_CONFIG_LOGGING_TARGET_SYSLOG:
0: no output of etherneframes (default)
1: output of ethernetframes

GOAL_CONFIG_LOGGING:
0: output of warnings disabled (default)
1: output of warnings enabled

Version:0.1 46/169

INDUSTRIAL
COMMUNICATION

g.a‘ MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

5.4.1.2 CMvariables

The following CMrariables are available twonfigure the Configuration Manager:

CM-Module-ID GOAL_IDETH
CMvariablelD 0

CMvariable name | ETH_CM_VAR_MAC
Description MAC address

CM data type GOAL_CMGENERIC
Sze 6 bytes

Default value from NVS or O
CM-Module-ID GOAL_ID_ETH
CMvariablelD 1

CMvariable name | ETH_CM_VAR_LINK
Description mask for the link state of the ethernet port
CM data type GOAL_CM_UINT32
Sze 4 bytes

Default vaue

from NVS or O

CM-Module-ID GOAL_ID_ETH

CMvariablelD 2

CMvariable name | ETH_CM_VAR_SPEED

Description mask for the speed of the ethernet port
CM data type GOAL_CM_UINT32

Sze 4 bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_ETH

CMvariablelD 3

CMvariable name | ETH_CM_VAR_DUPLEX

Description mask for duplex property of the ethernet port
CM data type GOAL_CM_UINT32

Sze 4 bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_ETH

CMvariablelD 4

Version:0.1

47/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

CMvariable name | ETH_CM_VAR_PORTCNT
Description number of ethernet ports
CM data type GOAL_CM_UINT32

Sze 4 bytes

Default value from NVS or O

The generi&&hernet Fame Handler usesGOALgueues internally. The size of these queues can be
optimized for the currenplatform. The configuration is described in chapfefi2.4

5.4.2 Callback functions

The ethernet frame handler supports a callback function:
9 for the receipt of ethernet frames and
1 toinform the application about the changed state of the etherpett.

The names of the callback functions are applicaspecific.

Prototype GOAL_STATUS_T cbEthFrameReceivedFunc(GOAL_BUFFER_T
** ppBuf)
Description | This callback function is used to deal with the received ethernet frame.
Parameters | ppBuf | pointer at the buffer containing the received ethernet fram
Return GOAL return status, see chap&B
values
Category mandatory, if theBhernet FFame Handler is used
Registration | during runtimeviafunction goal_ethProtoAdd()
Prototype void cbEthPortChangedFunc(GOAL_ETH PORT _T id, uint32_t
maskChg, struct GOAL_ETH_PORT_STATE_T *pState)
Description | This callbackunction is called to inform the application about the changed state
the ethernet port.
Parameters | id number of theethernet port
maskChg mask for the changed state bits
pState new state of the ethernet port
Return None
values
Category Optional
Registration | during runtimeviafunction goal_ethPortStateCbReg()
Version:0.1 48/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

5.4.3 Platform API

GOAL requires the followingdication function to communicate via ethernet:

Prototype GOAL_STATUS_T goal_targetEthlInit(void)

Description This indication function initializes the ethernet interface for the selected platfg
This function is called imé state GOAL_FSA _INIT_GOAL in stage
GOAL_STAGE_TARGET_PRE.

Parameters none

Return values | GOAL return status, see chap&B

Category mandatory if the Ethernet Frame Handler is used

Condition compilerdefine GOAL_CONFIG_ETHERNET must be setto 1

Prototype GOAL_STATUS Tgoal_targetEthCmd(GOAL_ETH_CMD_T cmd,
GOAL_BOOL_T wrFlag, uint32_t port, void *pArg)

Description This indication function executes an ethernet command.

Parameters cmd ethernet command
wrFlag access direction

1 GOAL_TRUE: execute the set option ofdtieernet
command
1 GOAL_FALSE: execute the read option of the ethernet
command
port number of ethernet port
pArg argument to the ethernet command

Return values

GOAL return status, see chap&B

Category mandatory if the Ethernet Frame Handler is used

Condition compilerdefine GOAL_CONFIG_ETHERNET must be setto 1

Prototype GOAL_STATUS T goal_targetGetMacAddr(GOAL_ETH_PORT_T
portldx, char *pMacAddr)

Description This indication function returns the MAC address of the ethernet interface of
specified board.

Parameters portldx number of the ethernet port
pMacAddr buffer to return the MAC address

Return values

GOAL return status, see chap&B

Category optional

Condition compilerdefine GOAL_CONFIG_ETHERNET must be setto 1

Prototype void goal_targetEthSend(void)

Description Thisindication function transmits an ethernet frame from the internal transmit
GOAL queue.

Version:0.1 49/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Parameters none

Return values | none

Category mandatory if the Ethernet Frame Handler is used

Condition compilerdefine GOAL_CONFIG_ETHERNET must be setto 1

5.4.4 Ethernetinterface

GOAL makes a general interface available to configure the ethernet intenfacto get state
information about the ethernet interfacee.g. the switch or PHYhere are wo possibilities to
accesgo the configuration setting or thetate information:

1 via special functions of thBhernet FFame Handler or

i via the ethernet command and the function goal_ethCmd()
The implementation and the support of the ethernet commands depend orpliiorm. The
platform-specific details are described in th©GLPlatformManual.

GOAL provides the followirgpmmands for the configuration of the ethernet interface:

Bhernet GOAL_ETH_CMD_AUTONEG_PROGRESS
command
Description get the state of the autaegotiation process

1 GOAL_ETH_AUTONEG_INPROGRESS,

1 GOAL_ETH_AUTONEG_FAIL_ALL,
 GOAL_ETH_AUTONEG_FAIL_DUPLEX,
T GOAL _ETH _AUTONEG_DONE,
1 GOAL_ETH_AUTONEG_SKIPPED

Secial set --

function

Secial get goal_ethAutonegProgressGet()

function

Bhernet GOAL_ETH_CMD_AUTONEG

command

Description setor get thebehavior for the autenegotiation:
1 GOAL_ETH_AUTONEG_ON,
1 GOAL _ETH _AUTONEG_OFF

Secial set goal_ethAutonegSet()

function

Secial get goal_ethAutonegGet()

function

Version:0.1 50/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Bhernet GOAL_ETH_CMD_AUTONEG RESTART
command
Description restart the autenegotiation process
Secial set --
function
Secial get --
function
Bhernet GOAL_ETH_CMD_DUPLEX
command
Description set or get the transfer mode:
f GOAL_ETH_DUPLEX_HALF
1 GOAL_ETH_DUPLEX_FULL
Secial set goal_ethLinkDuplexSet()
function
Secial get goal_ethLinkDuplexGet()
function
Bhernet GOAL_ETH_CMD_HW_FAULT
command
Description get anindicator for the last hardware fault
Secial set --
function
Secial get --
function
Bhernet GOAL_ETH_CMD_SPEED
command
Description set or get the rate of transfer: GOAL_ETH_SPEEGQAA,. ETH_SPEED 1
or GOAL_ETH_SPEED_ 1000 Mbit/s
Secial set goal_ethLinkSpeedSet()
function
Secial get goal_ethLinkSpeedGet()
function
Bhernet GOAL_ETH_CMD_SPEED_MAX
command
Description get the maximal allowed rate of transfer

Version:0.1

51/169

geal

COMMUNICATION

INDUSTRIAL PROFESSIONAL
INDUSTRIAL
COMMUNICATION

MIDDLEWARE

1 GOAL_ETH_SPEED_10 Mbit/s,
1 GOAL_ETH_SPEED_100 Mbit/s,
1 GOAL_ETH_SPEED_1000 Mbit/s

Secial set --
function
Secial get --
function
Bhernet GOAL_ETH_CMD_LINK_STATE
command
Description get thecurrent state of the ethernet connection:
f GOAL_ETH_STATE_UP,
1 GOAL_ETH_STATE_DOWN
Secial set --
function
Secial get goal_ethLinkStateGet()
function
Bhernet GOAL_ETH_CMD_PORT_STATE
command
Description switch on/off the ethernet port or get the current state of the ethernet por,
1 GOAL_ETH_STATE_UP,
f GOAL_ETH_STATE_DOWN
Secial set goal_ethPortStateSet()
function
Secial get goal_ethPortStateGet()
function
Bhernet GOAL_ETH_CMD_LINK_CAPABILITIES
command
Description get the supported transfer mode and transfer rate
Thereturn value has data type uint32_t and is-bdaded. The bits have the
following meaning for bit value 1:
1 bit 0: 10 Mbit/s in hakHduplex mode is supported
9 bit 1: 10 Mbit/s in fulduplex mode is supported
1 bit2: 100 Mbit/s in hatduplex mode is suppacet]
9 bit 3: 100 Mbit/s in fulduplex mode is supported
1 bit 4: 1000 Mbit/s in haHduplex mode is supported
9 bit 5: 1000 Mbit/s in fubduplex mode is supported
Secial set --
Version:0.1 52/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

function

Secial get --

function

Bhernet GOAL_ETH_CMD_AUTONEG_ADVERTISMENT

command

Description set or get the list for transfer rate and transfer mode for the anggotiation
process
The value has the data type uint32_t and isdmtled. The bits have the
following meaning for bit value 1.:
1 bit 0: 10Mbit/s in haltduplex mode is used
9 bit 1: 10 Mbit/s in fulduplex mode is used
9 bit2: 100 Mbit/s in hatduplex mode is used
9 bit 3: 100 Mbit/s in fuHduplex mode is used
1 bit 4: 1000 Mbit/s in haHduplex mode is used
9 bit 5: 1000 Mbit/s in fulduplex male is used

Secial set --

function

Secial get --

function

Bhernet GOAL_ETH_CMD_PORT_ADMIN_STATE

command

Description get thecurrent state of the ethernet port:

 GOAL_ETH_STATE_UP,
1 GOAL_ETH_STATE_DOWN

Secial set --

function

Secial get --

function

Bhernet GOAL_ETH_CMD_LED_LINK

command

Description setor getthe PHY link LED state

Secial set --

function

Secial get --

function

Version:0.1 53/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Bhernet GOAL_ETH_CMD_PORT_COUNT
command

Description get the number of installed ethernet ports

Secial set --
function

Secial get --
function

5.4.5 VLAN

GOAL makes a general interface available to configure the VLAN capabilities of the underlying
switch. The access to the configuration setting or the state information is realized via ethernet
commands and the function goal_ethCmdihe implementation anthe support of the ethernet
commands depend on thglatform.

GOAL provides the followireghernet commands for the VLAN capabilities

Bhernet command Description

GOAL_ETH_CMD_VLAN_MODE | set or getthe input mode of the VLAN processing

GOAL_ETH_CMD_VLAN_MODE | set or getthe output mode of the VLAN processing

GOAL_ETH_CMD_VLAN_DEF set or getthe default VLAND and priority for a port

GOAL_ETH_CMD_VLAN_PORT_/ adds a port as a member of the given VEIEN

GOAL_ETH_CMD_VLAN_PORT_I removes a port as a member from the given VLBN

GOAL_ETH_CMD_VLAN_TABLE_| get the VLAN table entry count

GOAL_ETH_CMD_VLAN_TABLE_| shows the entries of the VLAN table

GOAL_ETH_CMD_VLAN_VERIFY| enables/disables the VLAN domaierification for the
given port

GOAL_ETH_CMD_VLAN_DISCUN enabled/disables the discarding of frames with unknown
VLANIDs

5.4.6 MAC table

The MAC table subgroup provides an interface to the MAC table settings and allows totaccess
specific MAC table entries.

GOAL provides the following ethernet commandstfa handling of AC table settings

Bhernet command Description

GOAL_ETH_CMD_MACTAB_C| enables/disables the given feature of the MAC table:
1 learning : Automatic MAC address learning
1 ageing : MAC address ageing for dynamic entries

Version:0.1 54/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Bhernet command Description

1 migration : Allows the migration of MAC addresses
between ports

9 discunknown : Discard framewith unknown destination
address

1 pervlan : Learn MAC addresses per VLAN allowing thg
same MAC address in different VLANS

GOAL_ETH_CMD_MACTAB_S]| set an entry in the MAC table

GOAL_ETH_CMD_MACTAB_G| get an entry from the MAC table

GOAL_ETH_CMD_MACTAB_C| clear MAC table

5.4.7 Port settings

Bhernet command Description

GOAL_ETH_CMD_PORT_FWD_ADL| add port to forward table

GOAL_ETH_CMD_PORT_FWD_DEL| delete port from forward table

GOAL_ETH _CMD_PORT_AUTH set/get portauthorization

GOAL_ETH_CMD_PORT_CTRL_DIR set/get port controlled directions

GOAL_ETH_CMD_PORAPOL_ENABI set/get port EAPOL frame reception mode

5.4.8 QoS settings

Bhernet command Description

GOAL_ETH_CMD_QOS_MODE | set/get QoS mapping type

GOAL_ETH_CMD_QOS_PRIO_\ set/get QoS VLAN priority

GOAL_ETH_CMD_QOS_PRIO_|| set/get QoS IP priority

GOAL_ETH_CMD_QOS_PRIO_7 set/get QoS Ethertype priority

5.4.9 Implementation guidelines

5.4.9.1 Configure speed rate by special command

1. Set the transferate to 100 Mbit/s for the ethernet port with the number portNum:

GOAL_STATUS T res;
res = goal_ethLinkSpeedSet (portNum, GOAL_ETH_SPEED_100);

Version:0.1 55/169

7 \ INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

5.4.9.2 Restart the autonegotiation with goal_ethCmd()

1. Reset theautonegotiation for the ethernet port with the number portNum

GOAL_STATUS_T res;
res = goal ethCmd (GOAL_ETH_CMD_AUTONEG_RESTART, GOAL_TRUE, portNum, NULL);

5.4.9.3 Send and receive ethernet frames

Ethernet frames shall be send from the application directly,FSgearell ethernet channel2:
1. Create a callback function to handle receietternet frames applicatiospecific:

GOAL_STATUS_TcbEthFrameReceivedFunc (GOAL_BUFFER_T ** ppBuf) {
é
}
2. Register the callback function for the receipt of IPv4 ethernet frames with a high priority:

GOAL_STATUS T res;
res = goal_ethProtoAdd (GOAL_TRUE, GOAL_ETH_ETHERTYPE_IPV4, NULL,
cbEthFrameReceivedFunc);

3. If an ethernet frame was received, the callback functbithFrameReceivedFunc() is called
and the application can handle the ethernet frame.

4. Send arethernet frame:

GOAL_BUFFER_T*pBuf = NULL;
goal_ethGetNetBuf (&pBuf);
GOAL_MEMCPY (pBuf>ptrData, buf, len);
pBuf - >dataLen = len;

pBuf - >netPort = GOAL_ETH_PORT_HOST,;

goal_ethSend (&pBuf, GOAL_NET_TX_LOW);

5.5 Command line interface

5.5.1 Naming and parameter conventions

Version:0.1 56/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.5.2 Actions

Every command executes a-salled actiordescribing the functionality of the command. The
following table provides an overview of actions that may occur:

Action Function Example

set Set parameter values eth vlan verify set 1 on

show Show parameter values. The action ma rstp port show
accept one or mor@ptional parameters

help Show a help string for specific rstp port help
(sub)command

add Adding a value to a set of values e.g. eth mactab mac add
adding a port to a port map. 00:11:22:33:44:55 1

rem Removing a value from a setwdlues eth mactab mac rem

e.g. removing a port from a port map. 00:11:22:33:44:55 1

Not all commands implement all actions.
5.5.3 Command parameter conventions

5.5.3.1 Integer values

Integer values are currently only accepted with a base of 10 andoptaynally contain a sign.
As an example, the following command sets the port membership of port 1 to VLAN 1024:

$ eth vlan port add 1 1024

5.5.3.2 Strings

{GNRAY3I& | NB &l NdvBaeter Ay dd exdnipie SHe followingKommand sets the
value ofconfig variable@ (2 @I f dzS8 &G SEIl YLX S¢

$ cm set 0 1 fexampl eod

5.5.3.3 Ports

Ports are entered as integer values starting with O up to max. port number + 1. Max. port number
+1 represents the management port. A 5 port switch provides poct8 (external ports) and port

4 as management port.

For example, the following commands set the default VLAN tag for port 1 to 1024 with prio 7:

$ eth vlan default set 1 1024 7

Version:0.1 57/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.5.3.4 MAC addresses

MAC addresses are given in the formaxx:XX: XX:XX:XX wherexx stands for a two char
hex number. For example, the following command adds port 3 to MAC address 00:11:22:33:44:55

$ eth mactab mac add 00:11:22:33:44:55 3

5.5.3.5 IP addresses
IP addresses are given in the formai.xxX.XXX.XXX wherexxx stands for a oneto three-

digit decimal number. For example, the following command sets the IP address, netmask and
gateway for the TCP/IP stack:

$ net ip set 192.168.1.133 255.255.255.0 0.0.0.0

5.5.4 Ethernet Interface

The eth command provides an interface to Ethernet interfackusiing access to VLAN
configuration, Ethernet statistics aso.

5.5.5 VLAN

The VLAN subgroup provides an interface for configuring the VLAN capabilities of the underlying
switch.

Command | eth vlan mode in set <port> <ptrover|replace|tag|disable>
Description | Sets the input mode of the VLAN processing.
Parameter | <port> The port as number starting from 0 fol
the first port
<ptrover|replace|tag|disable> The VLAN input processing mode to
set:
1 ptrover
Passthrough/Overwrite

1 replace : If untagged, add the
tag, if single tagged, overwrite
the tag.

1 tag : Insert a tag always

9 disable : Disable input
processing

Command | eth vlan mode in show [port]

Description | Shows the input of the given port or all portsd port is given

Version:0.1 58/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Parameter | [port] The optional port where the input
mode shall be shown.
Command | eth vlan mode out set <port> <tagthr|domain|strip|disable>
Description | Sets the output mode of the VLAN processing.
Parameter | <port> The port asiumber starting from 0 for the
first port
<tagthr|domain|strip|disable> The VLAN input processing mode to set:
1 tagthr : Tag thru
1 domain : Transparent mode
9 strip : Strip (outer) tag
i disable : Disable output
processing
Command | eth vlan mode out show [port]
Description| Shows the output processing mode of the given port or all ports if no portis g
Parameter | [port] \ The optional port where the output mode shall be shown.
Command | eth vlan port add <port> <vlanid>
Description | Adds a port as enember of the given VLAN id.
Parameter | <port> The port as number starting from 0 for the first port
<vlanid> The VLAN id where the port shall become a member.
Command | eth vlan port rem <port> <vlanid>
Description | Removes a port as a member frahe given VLAN id.
Parameter | <port> The port as number starting from 0 for the first port
<vlanid> The VLAN id where the port shall be removed from.
Command | eth vlan table show
Description| Shows the entries of the VLAN table.
Parameter | None
Command | eth vlan default set <port> <vlanid> <prio>
Description | Sets the default VLAN id and priority for a port.
Parameter | <port> The port as number starting from 0 for the first port
<vlanid> The default VLAN id for the port.
<prio> Thepriority ranging from @ 7.
Command | eth vlian default show [port]
Description| Shows the default VLAN settings of the given port or all ports if no port is give
Parameter | [port] The optional port where the default VLAN settings shall
shown.
Version:0.1 59/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Command | eth vlan verify set <port> <on|off>

Description | Enables/disables the VLAN domain verification for the given port.

Parameter | <port> The port as number starting from 0 for the first port
<on|off> 1 on ¢ enable verification
1 off c¢disable verification

Command | eth vlan verify show [port]

Description | Shows the VLAN verification settings of the given port or all ports if no port is
given

Parameter | [port] The optional port where the VLAN verification settings
shall beshown.

Command | eth vlan discunknown set <port> <on|off>

Description | Enabled/disables the discarding of frames with unknown VLAN ids.

Parameter | <port> The port as number starting from 0 for the first port
<on|off> 1 on ¢enable discarding
1 off c¢disable discarding

Command | eth vlan discunknown show [port]

Description | Shows the unknown VLAN discarding settings of the given port or all ports if |
port is given

Parameter | [port] The optional port where the VLAdNscarding settings shall be
shown.

5.5.6 MAC table

The MAC table subgroup provides an interface to the MAC table settings and allows to access
specific MAC table entries.

Command| eth mactab conf set <ageing|migration|discunknown|pervian>

<on|off>
Descripto | Enabled/disables the given feature of the the MAC table.
n
Parameter| <learning|ageing|migration|discunknown| The feature setting to
pervian> change:
1 learning

Automatic MAC
address learning

1 ageing : MAC
address ageing for
dynamic entries

1 migration
Allows the migration

Version:0.1 60/169

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

of MAC addresses
between ports
7 discunknown
Discard frames with
unknown
destination address
1 pervilan :Learn
MAC addresses per
VLAN allowing the
same MAC address
in different VLANS
<on|off> f on ¢enable feature
1 off ¢disable
feature
Command | eth mactab conf show
Description | Shows the state of the different MAC table configuration settings.
Parameter | None
Command | eth mactab mac add <mac> <port>
Description | Adds the given port to the port map of the given Madtiress. If the MAC
address is not yet in the table, it is added as a static MAC address. Both, uni
and multicast MAC addresses are accepted.
Parameter | <mac> The MAC address where the port shall be added to. Th
address is given in the formak:xx:x X:XX:XX:XX
<port> The port as number starting from 0 for the first port.
Command | eth mactab mac rem <mac> <port>
Description | Removes the given port from the port map of the given MAC address. If the |
address does not contain any more poafser command execution, it is removel
from the MAC table. Both, unicast and multicast MAC addresses are accepte
Parameter | <mac> The MAC address where the port shall be removed fror
The address is given in the format
XX XX EXXEXX XX XX
<port> The port as number starting from O for the first port.
Command | eth mactab mac show <mac>
Description | Shows the port map for thgiven MAC address.
Parameter | <mac> The MAC address where the port map shall be shown.
address is given in the formak:Xx:Xx:XX:XX:XX
Command | eth mactab mac clear <static|dynamicjall>
Description | Deletes the MAC table.
Version:0.1 61/169

.a‘ COMMUNICATION
MIDDLEWARE

INDUSTRIAL

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Parameter

<static|dynamic|all> The following part of the MAC table is cleared:
1 static : static
1 dynamic : dynamic

1 all : complete

5.5.7 Denial of Service Prevention

This command group provides an interface to TX as well as broadcast and multicast rate limiting.

Command | eth dos txrate set <port> <limit>

Description | Sets the maximum allowed TX rate in percent.

Parameter | <port> The port as number starting from O for the first port.
<limit> The max. allowed TX rate in percent.

Command | eth dos txrate show [port]

Description | Sets the maximum allowed TX rate in percent for the given port. If no port is
given, the TX rates for all ports are shown.

Parameter | [port] The optional port as number starting from 0 for the first

port where the TX rate shall lshown.

Command | eth dos timebase set <timebase>

Description | Sets the time frame for broadcast/multicast rate limiting in ms. A timebase of
disables the rate limiting.

Parameter | <timebase> | The time base in ms.

Command | eth dos timebase show

Description | Shows the time frame for broadcast/multicast rate limiting in ms. A timebase
means that rate limiting is disabled.

Parameter | None

Command | eth dos mlimit set <limit>

Description | Sets the rate limiting for multicast frames. The limit is interpreted as <limit> pf
<timebase>. The time base is set pén dos timebase set command.

Parameter | <limit> | The limit in number of frames.

Command | eth dos mlimit show

Description | Showshe rate limiting for multicast frames. The limit is interpreted as <limit> |
<timebase>.

Parameter | None

Command | eth dos blimit set <limit>

Description | Sets the rate limiting for broadcast frames. The limit is interpreted as <limit> y

Version:0.1

62/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

<timebase>. The time base is set pén dos timebase set command.

Parameter | <limit> | The limit in number of frames.

Command | eth dos blimit show

Description | Showshe rate limiting for broadccast frames. The limit is interpreted as <limit
per <timebase>.

Parameter | None

5.5.8 Port settings

Command | eth port link show [port]
Description | Shows the link state of the given port. If no port is given, link state pbat$ is
shown.
Parameter | [port] | The port as number starting from 0 for the first port
Command | eth port adstate set <port> <on|off>
Description | Sets the admin state of the given port.
Parameter | <port> The port as number starting from O for tifiest port.
<on|off> Admin state of the port:
i1 on: Port enabled.
9 off : Port disabled.
Depending on the implementation, a port may still have
link when disabled but will not transmit/receive any
frame.
Command | eth port adstate show [port]
Description | Shows the port admin state of the given port. If no port is given, port state of |
ports is shown.
Parameter | [port] | The port as number starting from 0 for the first port
Command | eth port speed show [port]
Description | Shows the porstate of the given port. If no port is given, port state of all ports
shown.
Parameter | [port] \ The port as number starting from 0 for the first port
Command | eth port duplex show [port]
Description | Shows the duplex mode of the given port. Ifpart is given, duplex mode of all
ports is shown.
Parameter | [port] | The port as number starting from 0 for the first port
Command | eth port mirror set <port> <<portmap>|<mac>>
<idalinsaledalinda|eport|inport>
Description| Sets mirror mode of port
Version:0.1 63/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Parameter | [port] The port as number starting from 0 fol
the first port.
<<portmap>|<mac>> Either port map or MAC address for
mirrored ports.
<edalesalindalinsaleport|inport> The port mirror mode.

1 eda: egress destination addres
(requires ma@ddress)

i inda :ingress destination
address (requires mac address

9 esa: egress source address
(requires mac address)

i insa :ingress sorce address
(requires mac address)

1 eport : egress port (requires
portmap)

9 inport :ingress port (requires
portmap)

Command | eth port mirror show [port]

Description | Shows the mirror mode of the given port. If no port is given, mirror mode of al
ports is shown.

Parameter | [port] \ The port as number starting from O for the first port

Command | eth port mdi state show [port]

Description | Shows the port MDI state of the given port. If no port is given, the state of all
ports is shown.

Parameter | [port] \ The port as number starting from 0 for the first port
Command | eth port mdi state set <port> <defaultjuncrossed|crossed>
Description| Set the port MDI state of the given port.
Parameter | <port> The port as number starting from O for the
first port
<defaultuncrossed|crossed> The MDI state:

1 default: the default state

! uncrossed: Rx and Tx paths are
straight through connected

! crossed: Rxand Tx paths are
crossed

Command | eth port mdi mode show [port]

Description | Shows the port MDI mode of the given port. If no port is given, the mode of g
ports is shown.

Parameter | [port] \ The port as number starting from 0 for the first port

Version:0.1 64/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Command | eth port mdi mode set <port> <defaultjauto|manual>

Description | Set the port MDI mode of the given port.

Parameter | <port> The port as number starting from O for the first port

<defaultjautojmanual> The MDI mode:

1 default: the default mode

1 auto: the required MDI state is automaticall
detected

1 manual: the MDI state is manually set and
will not change

5.5.9 QoS Settings

Command | eth gos mode set <port> <etype|mac]ip|vlan> <on|off>
Description | Enables/disable the different QoS priority resolution modes for the given port. A
modes may be active.

Parameter | <port> The port as number starting from 0 for the first port.
<etype|maclip|vlan> The priority type to use:

1 etype : Enables Ethertype priority resolution
1 mac: Enables MAC based priority resolution
1 ip : Enables IP DiffServ/COS priority resolutiol
1 vlan : Enables VLAN priority resolution

<on|off> Enables/disables the mode:
1 on: Mode enabled.
1 off : Mode disabled.

Command | eth gos mode show [port]

Description | Shows the QoS priority resolution mode of the given port. If no port is given, |
mode of all ports is shown.

Parameter | [port] \ The port aswumber starting from O for the first port

Version:0.1 65/169

.a‘ COMMUNICATION
MIDDLEWARE

INDUSTRIAL

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Command | eth gos defprio set <port> <defprio>

Description | Sets the default priority for a frame if none of the active QoS priority resolutio
modes for the given port provides a resolution.

Parameter | <port> The port as number starting from 0 for the first port.
<defprio> The default priority. Valid ranges may differ depending ¢

the underlying hardware.

Command | eth gos defprio show [port]

Description | Shows the default priority of the giveport. If no port is given, the priority of all
ports is shown.

Parameter | [port] | The port as number starting from 0 for the first port

Command | eth gos vlanprio set <port> <vlanprio> <mapping>

Description | Sets the VLAN priority for the given port.

Parameter | <port> The port as number starting from 0 for the first port.
<vlanprio> The VLAN priority to map.
<mapping> The priority to which the VLAN priority is mapped to.

Command | eth gos vlanprio show [port]

Description | Shows the prioritymapping of the given port. If no port is given, the mapping ¢
all ports is shown.

Parameter | [port] | The port as number starting from 0 for the first port

5.5.10 Config Manager

The cm command provides a CLI interface to the GOAL config manatjewstthe manipulation
of existing variables and is able to show the current values of variables.

Command | cm set <modid> <varid> <newval>
Description | Sets the value of an existing variable in the config manager.
Parameter | <modid> The module id ofhe variable to set
<varid> The variable id of the variable to set
<newval> The new value to set. Integer values are entered as is v
Fy 2LWGA2yIEf aArAdayod {iNRARy3
character.
Command | cm show [<modid> <varid>]
Description | Shows the variable identified by given module and variable id or all variables
ids are given.
Parameter | <modid> The module id of the variable to set
<varid> The variable id of the variable to set
Version:0.1 66/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.5.11 Network Interface

Thenetwork interface command group provides access to general network settings e.g. settings
for the TCP/IP stack.

5.5.12 IP Settings

The ip sub command provides access to settings of the underlying TCP/IP stack.

Command | netip set <ip> <netmask> <gateway>

Description | Sets the IP address, the netmask and the default gateway of the underlying 1
stack.

Parameter | <ip> The new IP address in the fornmatx. xxX.XxX.XxX
<netmask> The new netmask in the formaix.xXXx.XXX. XXX
<gateway> The new default gateway in the format

XXX XXX XXX XXX

Command | netip show

Description | Shows the current IP settings of the underlying TCP/IP stack.

Parameter | None

5.6 Statistics

GOAL files:
goal stat.[h,C]

example:
X\goalapph00410_ goaleth_stats

GOAL provides the possibility ttack statistics. Primarily this is used for Etherneptopagate
statistics and to analyseommunication problera GOAL providee followingtypical ethenet
statisticsfor each port:

GOAL number of ethernet statistic Description
ID Number Identifier
GOAL_ID_ET| 1 GOAL_ETH_STATS_TOTAL_DISC number of total

discarded frames

GOAL_ID_ET 2 GOAL_ETH_STATS_TOTAL_BYTE_DISC number of total
discarded bytes

GOAL_ID_ET| 3 GOAL_ETH_STATS_TOTAL_FRAMES number of total
processed frames

Version:0.1 67/169

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of ethernet statistic Description
ID Number Identifier
GOAL_ID_ET| 4 GOAL_ETH_STATS_TOTAL_BYTE_FRAMES number of total
processed bytes
GOAL_ID_ET] 5 GOAL_ETH_STATS ODISC number of discarded
outgoing frames
GOAL_ID_ET] 6 GOAL_ETH_STATIHSC VLAN number of discarded
wrong or missing
VLANIDs
GOAL_ID_ET] 7 GOAL_ETH_STATS_IDISC_UNTAGGED number of discarded
missing VLAN tags
GOAL_ID_ET] 8 GOAL_ETH_STATS_IDISC_BLOCK number of discarded
due to blocking
mode
GOAL_ID_ET| 9 GOAL_ETH_STATS_LEARN_CNT number of learned
MAC addresses
GOAL_ID_ET| 10 GOAL_ETH_STATS_AFRAMES_RECEIVED | number of received
valid frames
including pause
GOAL_ID_ET 11 GOAL_ETH_STATS_AFRAMES_ CRC_ERR(number of received
frames with CRC
errors
GOAL_ID_ET| 12 GOAL_ETH_STATS_AALIGNMENT_ERROR{ number of received
frames with
alignment errors
GOAL_ID_ET 13 GOAL_ETH_STATS_AOCTETS_TRANSM_O number of
transmitted valid
octets
GOAL_ID_ET, 14 GOAL_ETH_STATS_ATX_ PAUSE_CTRL_FR| number of received
valid octets
GOAL_ID_ET| 15 GOAL_ETH_STATS_ATX_PAUSE_CTRL_FR| number of
transmitted pause
frames
GOAL_ID_ET| 16 GOAL_ETH_STATS_ARX_PAUSE_CTRL_FHR number of received
pause frames
GOAL_ID_ET| 17 GOAL_ETH_STATS_IFIN_ERRORS number of received
errors
GOAL_ID_ET| 18 GOAL_ETH_STATS_IFOUT_ERRORS number of transmit
errors
GOAL_ID_ET 19 GOAL_ETH_STATS_IFIN_UCAST_PKTS number of received
unicast frames
GOAL_ID_ET} 20 GOAL_ETH_STATS_IFIN_MCAST_PKTS number of received
multicast frames
GOAL_ID_ET 21 GOAL_ETH_STATS_IFIN_BCAST_PKTS number of received

Version:0.1

68/169

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of ethernet statistic Description
ID Number Identifier
broadcast frames
GOAL_ID ET| 22 GOAL_ETH_STATS_ IFOUT_DISC number of discarded
transmitted frames
GOAL_ID_ET| 23 | GOAL_ETH_STATS_IFOUT_UCASR_PKTS | number of
transmitted unicast
frames
GOAL_ID ET| 24 GOAL_ETH_STATS IFOUT_MCAST_PKTS | number of
transmitted
multicast frames
GOAL_ID_ET| 25 |GOAL_ETH_STATS_IFOUT_BCAST_PKTS | number of
transmitted
broadcast frames
GOAL_ID ET| 26 GOAL_ETH_STATS ETHERSTATS_OCTETY number of all bytes
(good and bad)
GOAL_ID ET| 27 GOAL_ETH_STATS ETHERSTATS PKTS | number of all frameg
(good and bad)
GOAL_ID ET| 28 GOAL_ETH_STATS ETHERSTATS UNDER{ number of frames
too short
GOAL_ID ET| 29 GOAL_ETH_STATS ETHERSTATS_ OVERSI| number of frame too
long
GOAL_ID ET| 30 GOAL_ETH_STATS ETHERSTATS PKTS64| number of frames
with size of 64 bytes
GOAL_ID_ET] 3 GOAL_ETH_STATS ETHERSTATS PKTS65| number of frames
with size 0f65-127
bytes
GOAL_ID_ET| 32 |GOAL_ETH_STATS ETHERSTATS_ PKTS12| number of frames
with size of 12855
bytes
GOAL_ID ET| 383 GOAL_ETH_STATS ETHERSTATS PKTS25| number of frames
with size of 256611
bytes
GOAL_ID_ET| 34 |GOAL_ETH_STATS _ETHERSTATS_ PKTS51| number of frames
with size of 512
1023 bytes
GOAL_ID ET| 35 GOAL_ETH_STATS ETHERSTATS PKT102{ number of frames
with size of 1024
1518 bytes
GOAL_ID_ET| 36 | GOAL_ETH_STATS ETHERSTATS PKTS15| number of frame
with size >= 1519
bytes
GOAL_ID_ET| 37 GOAL_ETH_STATS ETHERSTATS_JABBER number of jabbers
GOAL_ID_ET| 38 | GOAL_ETH_STATS ETHERSTATS FRAGS | number of

Version:0.1

69/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAL number of ethernet statistic Description
ID Number Identifier
fragments
GOAL_ID_ET| 39 GOAL_ETH_STATS_VLAN_RECV_OK number of received
valid VLANs

GOAL_ID_ET| 40 |GOAL_ETH_STATS_VLAN_TRANS_OK number of
transmitted valid
VLANS

GOAL ID_ET 41 GOAL_ETH_STATS FRAMES RETRANS number of
retransmitted
collision frames

GOAL_ID_ET| 42 GOAL_ETH_STATS_ADEFERRED number of deferred
at begin

GOAL_ID_ET| 43 GOAL_ETH_STATS_AMULTIPLE_COLL number of frames
transmitted after
multiple collisions

GOAL_ID_ET| 44 GOAL_ETH_STATS_ASINGLE_COLL number of frames
transmitted after
single collisions

GOAL_ID_ET| 45 |GOAL_ETH_STATS ALATE_COLL number of too late
collisions

GOAL_ID_ET| 46 | GOAL_ETH_STATS AEXCESS COLL number of frames
discarded due to 16
consecutive
collisions

GOAL_ID ET| 47 |GOAL_ETH_STATS_ACARR_SENSE_ERR | number of PHY
carrier sense errors

GOAL_ID_ET| 48 GOAL_ETH_STATS_IFIN_DISC number of discarded
received frames

GOAL_ID_ET| 49 | GOAL_ETH_STATS_IFIN_UNKNOWN_PROT number of received
unknown protocols

GOAL_ID _ET| 50 GOAL_ETH_STATS_SQE_ERR number of SQE test
errors

GOAL_ID_ET} 51 GOAL_ETH_STATS_MAC_TX_ERR number of internal
MAC Tx errors

GOAL_ID_ET| 52 GOAL_ETH_STATS_MAC_RX_ERR number of internal
MAC RXx errors

GOAL_ID_ET| 53 GOAL_ETH_STATS_SYMBOL_ERR number of symbol
errors

Table4: providedethernet statisticdy GOAL

GOAL tracks statistics, but some can be overwritten using a platform specific implementation.

Version:0.1 70/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.6.1 Access

Read a statistics value:

/* get received octets from port 0 */
res = goal_statValGetByld (&val, GOAL_ID_ETH, GOAL_STAT_ID_ETH_IFOUTOCTETS, 0);
if (GOAL_RES_ER(res)) {

goal_logErr (“failed to retrieve statistics counter");

return

}

Reset a statistics value:

res = goal_statResetByld (GOAL_ID_ETH, GOAL_STAT_ID_ETH_IFOUTOCTETS, 0);
if (GOAL_RES_ER(res)) {

goal_logErr (“failed to reset statistics counter”);

return

5.6.2 Ethernet statistics

Eachplatform managedhe support of the ethernet statistics listed Table4 for the ID
GOAL_ID_ETy a bitcoded mask of the GOAL data type uint64_t. Bit O of the mask represents
the ethernet statistic with the GOAL number 0.
The access to the statistic values are realized abouéthernet commands:
1 GOAL_ETH _CMD_STATS_MASK_GET: read the supported ethernet statistics from the
platform as bitcoded mask for akéthernet port
1 GOAL_ETH _CMD_STATS_GET: read the vadllesipported ethernet statistickor one
ethernetport
1 GOAL_ETH_CMD_STATS_RST: reset ethernet stiatistiternet ports; it isplatform-
specificwhich statistics of one or althernetports are reset
The ethernet commands are executed by function goal_ethCmd().

If the compilerdefine GOAL_CONFIG_ETH_STATS_NAMES is sestort description for each
ethernet statistic is available in code by ftioa goal_ethStatsNameGet().

example:
X\goahapph00410_goaleth_stats

5.7 Generic GOAL instances

This GOAtore module provides functiont manage instancesf GOAlcore modules or/and
GOAlextensionmodules. Each instance is identifiable by an instance type and an indfantee
instance type specifies the GOédre module or the GOAéxtensionmodule. The instance types
I NB RS F\gogl§dalgdalyid.hX The instamelDis an arbitrary number. Each instank2
must be used once within theameinstance type.

Version:0.1 71/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAlfiles:
goal_inst.[h,c]

example:
not available

5.8 Lockng

This GOAtoremodule provides functions to lock resources in the GOAL sy3teim.module
supports twotypes of lock mechanism:

1 countingsemaphore specified by thenumGOAL_LOCK_COUNT

1 binary mutex specified by thenumGOAL_LGC BINARY
The behaviofor waiting on a semaphore or mutean be configured. Active or passive waiting is
possible.
The implementation of the lock mechanismgpiatform-specific. In GOAL systems with an
operating systemhe lock mechanisms use tla@propriate services of the operating system.

The system is halted by function goal_targetHaltQaee of an error

GOAlfiles:
goal_lock.[h,c]

example:
X\goalapph00410_goaltask lock

5.8.1 Platform API

GOAL requires the following indication function to connect the GOAL systtra appropriate
services of the operating system

Prototype GOAL_STATUS_T goal_targetLockInit(void)

Description This indication function initiakes the locking mechanism on the operating syste
This function is called in the stage GOAL_STGEKPRE in state
GOAL_FSA_INIT_GOAL.

Parameters None

Return values | GOAL return status, see chap&B

Category Mandatory
Condition None
Prototype GOAL_STATUS_Tgoal_targetLockShutdown(void)

Description This indication function shutdowns the locking mechanism on the operating
system This function is called in the stage GOAL_STAGE_LOCK_PRE in sta

Version:0.1 72/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL_FSA_SHUTDOWN.

Parameters None
Return values | GOAL return status, see chap&B
Category Mandatory
Condition None
Prototype GOAL_STATUS T goal_targetLockC reate (GOAL_LOCK TYPET
lockType , GOAL_LOCKT *pLock , uint32_t vallnit
uint32_t valMax)
Description This indication functiocreates a lock on the operating system.
Parameters lockType type of the lock:
T GOAL_LOCK BINARY:
1 GOAL_LOCK_ COUNT:
pLock handle for the created lock
vallnit 1 counting semaphores: initial value of the lock
Number of instances which shall be marked as already
use normally
1 binary mutex: 0
valMax 1 counting semaphores: maximal value of the lock
Number of maximainstances which shall be use this lo
normally.
1 binary mutex: 1

Return values

GOAL return status, see chap&B

Category Mandatory
Condition None
Prototype GOAL_STATUS_T goal_targetLockDelete(GOAL_LOCK_T *pLock)
Description This indication function deletes thepecified lock on the operating system.
Parameters | pLock | handle for the lock
Return values | GOAL return status, see chap&B
Category Mandatory
Condition None
Prototype GOAL_STATUS T goal_targetLockGet(GOAL_LOCK_T *pLock,
uint32_t timeout)
Description This indicatiorfunction gets a lock from the operating system.
Parameters pLock handle for the lock
Timeout behavior if it is not possible to lock the resource:

>0: time for waiting on the lock in ms
0: infinite wait

Return values

GOAL return status, see chap&B

Version:0.1

73/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Category Mandatory

Condition None

Prototype GOAL_STATUS Tgoal_targetLockPut(GOAL_LOCK T *pLock)
Description This indication function returns a lock to the operating system.
Parameters pLock | handle for the lock

Return values | GOAL return status, see chap&B

Category Mandatory

Condition None

5.8.2 Implementation guidelines

5.8.2.1 Usea lock

1. Create a handle for the lock:
GOAL_LOCK_T*pLockHdl = NULL;

2. Create a binary lock and mark the lock for the GOAL core module goal_lock:
goal_lockCreate (GOAL_LOCK_BINARY, &pLockHdl, 0, 1, GOAL_ID_LOCK);

3. Wait forever on a lock andcesa lock:
goal_lockGet (pLockHdl, GOAL_LOCK_INFINITE);

4. Reset alock:
goal_lockPut (pLockHdl);

5. Delete the lock:

goal_lockDelete (pLockHdl);

5.9 Logging

This GOAtoremodule provides function® output data via an output channel like UART or
ethernet. The data can be divided into the following categories, named logging levels:

i error messages

1 warning messages

1 information messages

1 debugmessages
For each logging level this module providesoutput function:

Version:0.1 741169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Logging level Output function
Eror goal_logErr()
Warning goal_logWarn()
Information goal_loginfo()
Debug goal_logDbg()

The escape sequences and\r are filtered out from thebefore being send out through the
channel.

The output channel isonfigued by the compiledefines GOAL_CONFIG_LOGGING_TARET_RAW
and GOAL_CONFIG_LOGGING_TARGET_SYSLOG.

GOAL provides generic format descriptors to output dateake printtlike format specifiers
portablecompared to the architecture and compilerBheGOALformat descriptors are initialized
architecturespecific inX\goalplat\archhcommongoal_arch_common.h. The following format
descriptors are available: FMT_d32, FMT_i32, FMT_u32, FMT_x32, FMT_d64, FMT_i64, FMT_u64,
FMT_x64, FMT_size_t, FMT_ptr and FMTdiffit=MT _ptr represents a pointer address.

FMT _ptrdiff represents a difference of two pointer addresses.

Example: The actual position value of data type int32_t shall be printed as information:

goal loginfeo & I QG dzk £ LJ2 & A G miBd/iyactBos\&aly, pAoHE AYOES 6

The loggindunctionality is available after the state GOASA_INIT_GOAL
It is recommended only to enable logging during development as it can have a serious impact on
the runtime behavior.

GOAlfiles:
goal_log.[h,c]

example:
X\goalapphtask lock

5.9.1 Configuration
The following compiledefines are available to configure the logging:

GOAL_CONFIG_LOGGING:
0: logging is switched off for the complete GOAL system (default)
1: logging is switched on and the logging can be tisedther GOAL components

GOAL_CONFIG_LOGGING _TARGET_ RAW:
0: no boardspecific output channel is available (default)
1: the boardspecific output channel is used, most UART
Theboard-specific function goal_targetMsgRaw() must be available.

Version:0.1 75169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAL_CONFIG_LOGGING_TARGET_SYSLOG:
0: no output via a ethernet channel (default)
1: output via the ethernet channel as broadcasiternet frame, e.g. to indicate the
frame by Wireshark

5.9.2 Platform API

Prototype void goal_targetMsgRaw(const char *str, unsigned int
len)
Description This indication function insmis a raw nessage.
Parameters Ir raw message
Len length of the raw message in bytes
Return values | None
Category Optional
Condition compilerdefine GOAL_CONFIG_LOGGING _TARGET_ RAW must be set to 1

5.10 Message.ogger

TheMessagd.ogger(LM)is a module to buffer log messaggsnerated by any other componest
called generating components. The log messages can be processed by further components, called
processing components, séegurel.

_______ Device Manager @ CM variabl other GOAL core @
I << - kgl P goal_im g] module
| | ==
V I I
! |
. : goal_ImLog() !
\ el — — i ring buffer <—————:———{
& T | A —
v | ’
/E\ application “@ | : .,/ application @
-] P =, | LR 4
v goal_ImBufferGet()

\ ’
= T ' 7
N , .
N h .
NN , .
NI S

v P
VA S
processing components generating components

Figurel3integration of the message logger

A log messageorsistsof a header and a parametétock The parameteblockis optional and can
include the values of up to 2 parameters in order to indicate current values or state infornegtion

Version:0.1 76/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

processingside Thestructure of a log messageshown inFigurel4.

log-1D

timestamp

header

paramsLength

padLength

log message

parameter 1 length

parameter 1 value

parameter block

parameter 2 length

parameter 2 value

Figurel4: data structure of a log message

The header of the log message contatims following information

1 log-ID: a unique number to report @efinite messagé4 byte)

i timestamp: indicates the time in ms since the start of the dey&byte)

1 parameter length: length of parameter 1 and parameter 2 in the paramateekin byte (4

byte)

1 padding length: number of padding bytes to fill up the log mes¢adsyte)
The generating components write the&der of log messages into the ring buffer by function
goal_ImLog(). This function generates the timestamp and adds the padding bytes automatically.

The parameter block contains for each parameter the length (2 bytes) and the parameter value.
There arefunctions to write one parameter depending on the data type of the parameter.
goal_ImLogParamUINT16(). TMessagd.ogger supports parameters of the Ljphrameter data
types, see chaptes.2

The arguments CWhoduleID, textID and text of the function goal _ImLog() are implemented for
future.

If the ring buffer is full, the next log message, which shall be stored in the ring buffer, overwrites
the oldest logmessagsin the ring bufferThe log messages are stored iplatform dependent

byte order.

Version:0.1 77/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

On processingidethe logID shall be known and can be assigned to specific prigseg.g. a
logging textand a severity clas$he reduction of a unique leldp allows a fasnformation transfer
with less resourcesTheMessagd.ogger supports the following severity classes:

1 GOAL_LOG_EXCEPTION

1 GOAL_LOG_ERROR

1 GOAL_LOG_WARNING

1 GOAL_LOG_INFO

1 GOAL_LOG_DEBUG
The availability of log messages in the ring buffer can be checked by function
goal_ImBufferGetCnt(J.og mesages can be read from the ring buffer by function
goal_ImBufferGet(according to the FIF@ethod.

Each processing component has to administrate the read pointer of the ring buffer by itself. This
allows that the same log message is interpreted by bfie processing components.

This module is used by the Device Manager aboutv@iables.

GOAL files:
goal_Im.[h,c]

example:

not available

Conventional log messages generated by the logging api are also stored in the Ic
buffer.

5.10.1 Configuration

5.10.1.1Compilerdefines
The following compiledefines are available to configure the Message Logger:

GOAL_LM_BUFFER_SIZE:
size of thering buffer for the logging messages in bytes (default: 5120 byte)

5.10.1.2CMvariables

For the configuration of the Message Logger the followingv@hbles are available:

| CMModulelD | GOAL_ID_LM |

Version:0.1 78/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

CMvariablelD 0

CMvariable name | LM_CM_VARREADBUFFER

Description Buffer forreading online logging from device
CM data type GOAL_CM_GENERIC

Sze 128bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_LM

CMvariablelD 1

CMvariable name | LM_CM_VAR_CNT

Description Control word foronline log access
CM data type GOAL_CM_UINT16

Sze 2 bytes

Default value from NVS or O

CMModule-ID GOAL_ID_LM

CMvariablelD 2

CMvariable name | LM_CM_VAREXLOG_READBUFFER

Description Buffer forreading exception logging from device
CM data type GOAL_CM_GENERIC

Sze 128 bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_LM

CMvariablelD 3

CMvariable name | LM_CM_VAREXLOG_CNT

Description Control word for exception log access
CM data type GOAL_CM_UINT16

Sze 2 bytes

Default value from NVS or O

5.10.2 Implementation guidelines

5.10.2.1Write a log message without parameters to the ring buffer

The log message is generated by the dediection module with the CMnodule D

Dh! [yL5¢y55d ¢KS 23 YSaalr3aS GONNBNI 6KAtS Syl o
GOAL_LOG_ERROR and assigned-tDldgnd texdD 5.Because no parameter shall be

transferred, the length of parameter 1 and paramegeis 0.

Version:0.1 79169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

1. write header of the log message:
goal_ImLog (GOAL_ID_DD, 4, 5, 0, 0, GOAL _LOG_ERRORAfie fidgabling UDP

channel 0) ;

5.10.2.2Write a log message with parameters to the ring buffer

The log message is generated by the device detection module with them@le 1D

Dh! [yL5¢Y55d ¢KS 23 YS&aal3dS AG9INNBNI gKAE S
GOAL_LOG_ERROR and assigned-tb lbg@nd texdD 2.In error case the pomumber of the
UDP channel shall be reported. The port number has the data type uinfB2e tength of
parameter 1 is 4 byteS he following function sequence is necessary:

1. write header of the log message:

goal_ImLog (GOAL_ID_DD, 1, 2, 4, 0,GOAL_LOG_ERROR, i Erwhieer opening UDP server
channel on port $ 10) ;

2. write the parameter value:
goal_ImLogParamUINT32 ((uint32_t) DD_UDP_PORT);

3. finish the entry of the log message in the ring buffer:
goal_ImLogFinish 0;

5.11 Network handling

This GOAtoremoduleprovides an interface to the application foCP/IRRonnections seeFigure
15. A TCP/IP stack is required. The TCP/IP staisk be enabled by the compilelefine
GOAL_CONFIG_TCPIP_STACK = 1.

TCP/IP stack @ goal_net g]

net channel 1 TCPS:]

—_— port A
N A goal_eth @ application @
ethernet
bus

net channel 2 UDP{]

Figurel5: topology for net channels

2 LISy

GOAL creates the number of GOAL_CONFIG_NET_CHAN_MAX net channels during initialization

Version:0.1 80/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

automaticallyfor this purpose Eacmet channel can be opened as one of the following network
connection types:

1 GOAL_NET_UDP_SERVER

1 GOAL_NET _UDP_CLIENT

1 GOAL_NET_TCP_LISTENER represents the TCP server

f GOAL_NET_TCP_CLIENT

The connection between the net channels and the TCP/IP stack is addressed by the local IP
address, local netmask amhacalgateway address. The connection between the TCEdEk to a
remote ethernet device is addressed by the remotadieressthe remote netmasland remote
gateway addressThe rules for the determination of the local addrese shown inFigurel6. The
local address is determinetlring creation of the net channeis the state GOALESA_INIT
automatically The remote address is configured by calling the function goal_netOpen().

start the

determination
of the local

address

valid address
about the CM
loaded from

NVS available?

valid address
via DHCP
available?

valid address loaded
from TCP/IP stack
available?

no

3211 tn 321 tn 3211 tn 321 tn
use local address use local address from NVS use local address loaded| no local address available]
determined by DHCP from TCP/IP stack set local address by
goal netOpen()

determination of
local address
finished

Figurel6: determinationof the local addresef net channels

Theconnection to the application is realized by a callback function, see chagdter2 Each net
channel must be activated before data can be transmitted or recenethe net channel. The
activation is done by function goal_netActivate().

Version:0.1 81/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The followingoptions are available to configure the TCP/IP stack:
T GOAL_NET_OPTION_NONBLE&dKet connection between net channel and TCP/IP stack
is
0: blocking
1: nonblocking
f GOAL_NET_OPTION_BROADCAST
0: no broadcast reception
1: broadcast receptiosupported
1 GOAL_NET_OPTION_TTL
se TTL value in tReader
1 GOAL_NET_OPTION_TOS:
setTOSvaluein IRheader
1 GOAL_NET_OPTION_MCAST_ADD:
enable the specified multicast address for the receipt of multicast packets
1 GOAL_NET_OPTION_MCAST_DROP:
disable the specified multicast address for the receipt of multicast packets
1 GOAL_NET_OPTION_REUSEADDR:
0: TCP/IP socket shall be not reusable
1: TCP/IP sockshall be reusable

The options can be can be changed by function goal_netSetOpfid®)availability and the
default setting of theoptionsdepends on the TCP/Beack.

GOAlfiles:
goal_net.[h,c] goal_net_dhcp.[h,¢jgoal_net_cli.c

example:
X\goalapph00410_goalicp_client

5.11.1 Configuration

5.11.1.1Compilerdefines
The following compiledefines are available to configure the network handling:

GOAL_CONFIG_TCPIP_STACK:
0: network handling is disabled (default)
1: network handling is enabled

GOAL_CONFIG_NET_CHAN_MAX:
number of network channels (default: 4)

GOAL_CONFIG_DHCFP:
0: static assignment of {&ddresses (default)

Version:0.1 82/169

INDUSTRIAL
.a COMMUNICATION
MIDDLEWARE

1: dynamic assignment ¢-addresses via DHCP

GOAL_CONFIG_IP_STATS:
0: output of IPstatistics switched off (default)
1: output of IRstatistics switched on

5.11.1.2CMvariables

The following CMariables are available to configure the netwdidndling:

pert

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

CM-Module-ID GOAL_ID_NET
CMvariablelD 0

CMvariable name | NET_CM_VAR_IP
Description IP address of first interface
CM data type GOAL_CM_IPV4

Sze 4 bytes

Default value from NVS or O
CM-Module-ID GOAL_ID_NET
CMvariablelD 1

CMvariable name | NET_CM_VARNETMASK
Description netmask of first interface
CM data type GOAL_CM_IPV4

Sze 4 bytes

Default value from NVS or O
CM-Module-ID GOAL_ID_NET
CMvariablelD 2

CMvariable name | NET_CM_VARGW
Description gateway of first interface
CM data type GOAL_CM_IPV4

Sze 4 bytes

Default value from NVS or O
CM-Module-ID GOAL_ID_NET
CMvariablelD 3

CMvariable name | NET_CM_VARCOMMIT
Description Write anyvalue to this CMvariable applies the IP settings
CM data type GOAL_CM T8

Sze 1 byte

Version:0.1

83/169

INDUSTRIAL
COMMUNICATION

g.a‘ MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

| Default value | from NVS or 0
CM-Module-ID GOAL_ID_NET
CMvariablelD 4
CMvariable name | NET_CM_VAR/ALID
Description validity of IP address:

9 O: stored IRaddress is not valid, interface settings originate from netwg
stack of system
1 1. gored IP address is valid, will be applied to interface at start of dev

CM data type

GOAL_CM_UINTS

Sze 1 byte

Default value from NVS or O

CM-Module-ID GOAL_ID_NET

CMvariablelD 5

CMvariable name | NET_CM_VARDHCP_ENABLED
Description CMvariable to disable/enable DHCP:

M1 O: DHCP disabled
1 1: DHCP enabled

CM data type

GOAL_CM_UINTS

Sze 1 byte

Default value from NVS or O

CM-Module-ID GOAL_ID_NET

CMvariablelD 6

CMvariable name | NET_CM_VARDHCP_STATE

Description CMvariable to indicate the current state of DHCP if DHCP is enabled:

1 0O: DHCP initialized

1: DHCP selecting server

2: DHCP requesting configuration

3: DHCP IRddress bound

4: DHCP renewing configuration

1 5: DHCP rebinding IP address to interface

1
T
1
1

CM data type

GOAL_CM_UINTS

Sze 1 byte

Default value from NVS or O
CM-Module-ID GOAL_ID_NET
CMvariablelD 7

Version:0.1

84/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

CMvariable name | NET_CM_VARDNSO

Description first DNS server dhe first interface
CM data type GOAL_CM_IPV4

Sze 4 bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_NET

CMvariablelD 8

CMvariable name | NET_CM_VARDNS1

Description second DNS server of the firsterface
CM data type GOAL_CM_IPV4

Sze 4 bytes

Default value from NVS or O

CM-Module-ID GOAL_ID_NET

CMvariablelD 9

CMvariable name | NET_CM_VARHOSTNAME
Description host name of the first interface
CM data type GOAL_CM_STRING

Sze 20 bytes

Default value from NVS or O

5.11.2 Callback functions

The user of this modulean specify the following callback functifor each network channel

Prototype

void cbNetFunc(GOAL_NET_CB_TYPE_T cbType, struct
GOAL_NET_CHAN_T *pChan, struct GOAL BUFFER_ T *pBuf)

Description

This callback function is uséat the following operations:
1 GOAL_NET_CB_NEW _DATA: to transfer received data to the applicati
1 GOAL_NET_CB_NEW_SOCKET: to inform the application, that a new
connection of a net channel to tHECP/IP stack was opened
GOAL_NET_CB_CONNECTED: to inform the application, that the net
channel was activated
GOAL_NET_CB_CLOSING: to inform the application, that the net char
was closed

T

T

Parameters

cbType type of operation:
1 GOAL_NET_CB_NEW_DATA,
1 GOAL_NE CB_NEW_SOCKET,

1 GOAL_NET_CB_CONNECTED,

Version:0.1

85/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

1 GOAL_NET_CB_CLOSING
pChan handle of the network channel
pBuf for GOAL_NET_CB_NEW_DATA: buffer with the received
else: NULL

Return none
values
Category optional

If a callback function isot available, specify NULL in tball of goal_netOpen().
Registration | during runtimevia function goal_netOpen()

5.11.3 IP gatistics

GOAL provides the possibility to analyze communication probleniBdigtistics. The supporteliP
statisticsbases onfRFC 1213/ and depend on thelatform. GOAL provides the following typid¢&l

statistics

GOAL number of Iftatistic

Numbe
r

Identifier (object type)

Description/RFC1213/

0

GOAL_NET_IP_STATS_IPINHDRERROFH

The numberof input datagrams discarded
due to errors in their IP headers, includin
bad checksums, version number
mismatch, other format errors, tim#o-

live exceeded, errors discovered in
processing their IP options, etc.

GOAL_NET_IP_STATS_IPINADDRERRC(

The number of input datagrams discarde
because the IP address in their IP headeg
destination field was not a valid address
be received at this entity. This count
includes invalid addresses and addresse
of unsupported classes. For entities whic
are not IP gateways and therefore do not
forward datagrams, this counter includes
datagrams discarded because the
destination address was not a local
address.

GOAL_NET_IP_STATS_IPINAN¥NPROT|
oS

The number of lodé/-addressed
datagrams received successfully but
discarded because of an unknown or
unsupported protocol.

GOAL_NET_IP_STAPBNDISCARDS

The number of input IP datagrams for
which no problems were encountered to
prevent theircontinued processing, but

Version:0.1

86/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of I8atistic Description/RFC1213/
Numbe Identifier (object type)
r
which were discarded. Note that this
counter does not include any datagrams
discarded while awaiting rassembly.
4 GOAL_NET_IP_STATS_IPINDELIVERS | The total number of input datagrams

successfully delivered to IP ugaiotocols
(including ICMP).

GOAL_NE IP_STATS_IPOUTREQUEST:

The total number of IP datagrams which
local IP useprotocols (including ICMP)
supplied to IP in requests for transmissio
Note that this counter does not include
any datagrams counted in

14/GOAL_NET _IP_STATS IPFORWDA]
AMS.

GOAL_NET_IP_STATS_IPOUTDISCARL

The number of output IP datagrams for
which no problem was encountered to
prevent their transmission to their
destination, but which were discarded.
Note that this counter would include
datagrams counted in
14/GOAL_NET_IPTATS IPFORWDATAG
AMS if any such packets met this discard
criterion.

GOAL_NET_IP_STATS_IPOUTNOROUT

The number of IP datagrams discarded
because no route could be found to
transmit them to their destination. Note
that this counter includes aryackets
counted in

14/GOAL_NET _IP_STATS IPFORWDA
la{ 6KAOK ¥NPSdaii Si¢K A
Note that this includes any datagram
which a host cannot route because all of
its default gateways are down.

GOAL_NET_IP_STATS_IPREASMOKS

The number of IP daggams successfully
reassembled.

GOAL_NET_IP_STATS_IPREASMFAILS

The number of failures detected by the IF
reassembly algorithm. Note that this is n(
necessarily a count of discarded IP
fragments since some algorithms can log
track of the number of fragents by

combining them as they are received.

10

GOAL_NET_IP_STATS_IPFRAGOKS

The number of IP datagrams that have

Version:0.1

87/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of I8atistic Description/RFC1213/
Numbe Identifier (object type)
r
been successfully fragmented at this
entity.
11 GOAL_NET_IP_STATS_IPFRAGFAILS | The number of IP datagrams that have

been discardedbecause they needed to b
fragmented at this entity but could not be

12

GOAL_NET_IP_STATS_IPFRAGCREATE

The number of IP datagrafragments that
have been generated as a result of
fragmentation at this entity.

13

GOAL_NET_IP_STATS_IPREASMREQG

The numler of IP fragments received
which needed to be reassembled at this
entity.

14

GOAL_NET_IP_STATS_IPFORWDATAG

The number of input datagrams for which
this entity was notheir final IP
destination, as a result of which an
attempt was made to find a rda to
forward them to that final destination. In
entities which do not act as IP gateways,
this counter will include only those packe
which were sourceouted via this entity,
and the sourceoute option processing
was successful.

15

GOAL_NET_IP_STAPSNRECEIVES

The total number of input datagrams
received from interfaces, including those
received in error.

16

GOAL_NET_IP_STATS_TCPACTIVEOPEH

The number of times TCP connections
have made a direct transition from the
CLOSED state to tlYNSENT state.

17

GOAL_NET_IP_STATS_TCPPASSIVEOF

The number of times TCP connections
have made a direct transition from the
LISTEN state to the SRCVD state.

18

GOAL_NET_IP_STATS_TCPATTEMPTF/

The number of times TCP connections
have made a dirddransition from either
the SYNSENT or SYRICVD state to the
CLOSED state, plus the number of times
TCP connections have made a direct
transition from the SYNRCVD state to the
LISTEN state.

19

GOAL_NET_IP_STATS_TCPESTABRES

The number of times TCPrutections
have made a direct transition from either
the ESTABLISHED or CEOW8H state to
the CLOSE state.

Version:0.1

88/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of I8atistic Description/RFC1213/
Numbe Identifier (object type)
r
20 GOAL_NET_IP_STATS_TCPOUTSEGS | The total number of segments sent,

including those on current connections b
excluding those containing only
retransmitted octets.

21

GOAL_NET_IP_STATS TCPRETRANSS

The total number of segments
retransmitted. That is the number of TCP
segments transmitted containing one or
more previously transmitted.

22

GOAL_NET_IP_STATS_TCPINSEGS

The total number osegments received,
including those received in error. This
count includes segments received on
currently established connections.

23

GOAL_NET_IP_STATS_TCPINERRS

The total number of segments received il
error.

24

GOAL_NET_IP_STATS_TCPOUTRSTS

The number of TCP segments sent
containing the RST flag.

25

GOAL_NET_IP_STATS_UDPINDATAGR

The total number of UDP datagrams
delivered to UDP user.

26

GOAL_NET_IP_STAJSPNOPORTS

The total number of received UDP
datagrams for which there was no
application at the destination port.

27

GOAL_NET_IP_STATS UDPINERRORS

The number of received UDP datagrams
that could not be delivered for reasons
other than the lack of an application at th
destination port.

28

GOAL_NETP_STATS_UDPOUTDATAGR

The total number of UDP datagrams sen
from this entity.

29

GOAL_NET_IP_STATS_ICMPINMSGS

The total number of ICMP messages wh|
the entity received. Note that this countel
includes all those counted by 30/
GOAL_NET_IP_STATS_ICIERRORS.

30

GOAL_NET_IP_STATS_ICMPINERROR}

The number of ICMP messages which th
entity received but determined as having
ICMRspecific errors.

31

GOAL_NET_IP_STATS_ICMPINDESTUN
HS

The number of ICMP Destination
Unreachable messagesceived.

32

GOAL_NET_IP_STATS_ICMPINTIMEEX

The number of ICMP Time Exceeded
messages received.

33

GOAL_NET_IP_STATS_ICMPINPARMPH

The number of ICMP Parameter Problen
messages received.

34

GOAL_NET_IP_STATS_ICMPINSRCQU

The number of ICMP Source Quench

Version:0.1

89/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of I8atistic Description/RFC1213/
Numbe Identifier (object type)
r
messages received.
35 GOAL_NET_IP_STATS_ICMPINREDIRE| The number of ICMP Redirect messages

received.

36

GOAL_NET_IP_STATS_ICMPINECHOS

The number of ICMP Echo (request)
messageseceived.

37

GOAL_NET_IP_STATS_ICMPINECHOR

The number of ICMP Echo Reply messa
received.

38

GOAL_NET_IP_STATS_ICMPINTIMEST/

The number of ICMP Timestamp (reques
messages received.

39

GOAL_NET_IP_STATS_ICMPINTIMEST/
EPS

The number of ICMPmestamp Reply
messages received.

40

GOAL_NET_IP_STATS_ICMPINADDRM

The number of ICMP Address Mask
Request messages received.

41

GOAL_NET_IP_STATS_ICMPINADDRM
EPS

The number of ICMP Address Mask Rep
messages received.

42

GOAL_NET_IP_STATS_ICMPOUTMSGS

The total number of ICMP messages whi
this entity attempted to send. Note that
this counter includes all those counted by
43/
GOAL_NET_IP_STATS_ICMPOUTERR(

43

GOAL_NET_IP_STATS_ICMPOUTERRC

The number of ICMP messages which th
entity did not send due to problems
discovered within ICMP such as a lack o
buffers. This value should not include
errors discovered outside the ICMP layer
such as the inability of IB route the
resultant datagram. In some
implementations there may be no types (¢
SNNEN) gKAOK O2y i NR
value.

44

GOAL_NET_IP_STATS_ICMPOUTDEST|
ACHS

The number of ICMP Destination
Unreachable message sent.

45

GOAL_NET_IP_STATS_IQMIPUMEEXCD

The number of ICMP Time Exceeded
messages sent.

46

GOAL_NET_IP_STATS_ICMPOUTECHC

The number of ICMP Echo (request)
messages sent.

47

GOAL_NET_IP_STATS_ICMPOUTECHC

The number of TCMP Echo Reply messg
sent.

48

GOAL_NET_IP_STATS_IFINOCTETS

The total number of octets received on th
interface, including framing characters.

49

GOAL_NET_IP_STATS_IFINUCASTPKT

The number of subnetworknicast

Version:0.1

90/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

GOAL number of I8atistic Description/RFC1213/
Numbe Identifier (object type)
r
packets deliveredo a higherlayer
protocol.
50 GOAL_NET_IP_STATS_IFDWBIPKTS | The number of nofunicast packets

delivered to a highelayer protocol.

51

GOAL_NET_IP_STATS_IFINDISCARDS

The number of inbound packet which we
chosen to be discarded even though no
errors had been detected to prevent their
beingdeliverable to a highelayer
protocol.

52

GOAL_NET_IP_STATS_IFINERRORS

The number of inbound packets that
contained errors preventing them from
being deliverable to a highdayer
protocol.

53

GOAL_NET_IP_STATS_IFINUNKNOWN
oS

The number of packets received via the
interface which were discarded because
an unknown or unsupported protocol.

54

GOAL_NET_IP_STATS_IFOUTOCTETS

The total number of octets transmitted ou
of the interface, includig framing
characters.

55

GOAL_NET_IP_STATS_IFOUTUCASTPI

The total number of packets that higher
level protocols requested be transmitted
to a subnetworkunicast address, includini
those that were discarded or not sent.

56

GOAL_NET_IP_STATS IFOUTNUCAST

The total number of packets that higher

level protocols requested be transmitted
to a nonrunicast address, including those
that were discarded or not sent.

57

GOAL_NET_IP_STATS_IFOUTDISCARL

The number of outbound packetghich
were chosen to be discarded even thoug
no errors had been detected to prevent
their being transmitted. One possible
reason for discarding such a packet coul
be to free up buffer space.

58

GOAL_NET_IP_STATS_IFOUTERRORS

The number of outbound packethat
could not be transmitted because of
errors.

Table5: provided IP statistic by GOAL

Eachplatform managedhe support of the IP statistics listed Table5 by a bitcoded mask of the

GOAL data type uint64 _t. Bit O of the mask represents the IP statistic with the GOAL number O.

The access to the dtatic values are realized about the ethernet commands:

Version:0.1

91/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

1 GOALNETCMDIP STATS MASK_GET: read the suppdirsthtistics from theplatform
as bitcoded mask for all port

GOALNET CMD IP_STATS_GET: read the values of all suppditstatistics
GOALNET CMD IP_STATS_RST: reflestatistics; it iplatform-specific which statistics of
one or all ports areeset

ThelPcommands are executed by function gdargetNetCmd().

)l
il

5.11.4 Platform API

GOAL requires the following indication functimn the handling of net channels:

Prototype uint32_t goal_t arget NetGetHandleSize (void)
Description This indication functiometurns the memory size, which is needed for a net
channel handle.
Parameters None
Return values | size of a net channel handle in bytes
Category Mandatory
Prototype GOAL_STATUS T goal_t argetNetRecv (GOAL_BUFFER_T **ppBuf)
Description This indication functioms called everytirma TCP/IP packet is received
Parameters ppBuf \ GOAL ethernet buffer containing tmeceivedpacket
Return values | GOAL return status, see chap&B
Category Mandatory
Prototype GOAL_STATUS T goal_targetNet IpSet(uint32_t addrlp,
uint32_t addrMask, uint32_t addrGw, GOAL_BOOL_T
flgTemp)

Description This indication functiomllows to set thdP configuratiorfor the TCP/IP stacKhis
function is called in state GOAL_FSA_INIT normally.

Parameters addrlp local IP address
addrMask local subnet mask
addrGw local gateway address
flgTemp kind of the IP configuration

1 GOAL_TRUEhere are no CMariables available to storg
the IP configuration. ThE> configuration is handled
temporary.

1 GOAL_FALSEhere are CMariables available to store
the IP configuration. Thi# configuration i®andled
about CMvariables.

Return values | GOAL return status, see chap&B

Category Mandatory

Version:0.1 92/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Prototype GOAL_STATUS T goal_targetNetlpGet(uint32_t *pA ddrip,
uint32_t *pAddrMask, uint32_t *pAddrGw, GOAL BOOL_T
*pF IgTemp)

Description This indication functiometurns the current IP configuratiomsed by the TCP/IP
stack.

Parameters pAddrip currentlocal IP address
pAddrMask currentlocal subnet mask
pAddrGw currentlocal gateway address
pHAgTemp current kind of the IP configuration

1 GOAL_TRUE: There no CMvariables available to storg
the IP configuration. The IP configuration is handled
temporary.

1 GOAL_FALSE: There are-¥@vables available to store
the IP configuration. The IP configuration is handled
about CMvariables.

Return values

GOAL rettn status, see chapte8.3

Category Mandatory
Prototype GOAL_STATUS_T goal_targetNet Open(void **ppTargetHandle,
GOAL_NET_TYPE_T type, GOAL_NET_ADDR_T *pAddr)
Description This indication function allow® open a net channel.
Parameters ppTargetHandle | handlefor the net channel
type connectiontype:
1 GOAL_NET_UDP_SERVER
1 GOAL_NET_UDP_CLIENT
1 GOAL_NET_TCP_LISTENER
1 GOAL_NET_TCP_CLIENT
pAddr local and maybe remote address of the net channel
Return values | GOAL return status, see chap&B
Category Mandatory
Prototype GOAL_STATUS T goal_targetNetReopen(char *pTgtHandle,
GOAL_NET_TYPE_Ttype , GOAL_NET_ADDR_T *pAddr)
Description This indication function allows to reopéine net channekpecified by the handle
Parameters pTgtHandle handle for the net channel
type connection type:

1 GOAL_NET_UDP_SERVER
1 GOAL_NET UDP_CLIENT
1 GOAL_NET_TCP_LISTENER

Version:0.1

93/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

1 GOAL_NET TCP_CLIENT

pAddr local and maybe remote address of the net channel
Return values | GOAL return status, see chap&B
Category Mandatory
Prototype GOAL_STATUS T goal_targetNetClose(void *pTargetHandle,
GOAL_NET_TYPE_T type)
Description This indication function allows tosethe net channekpecified by the handle
Parameters pTargetHandle | handle for the net channel
type connection type:

1 GOAL_NET UDP_SERVER
1 GOAL_NET_UDP_CLIENT
1 GOAL_NET TCP_LISTENER
1 GOAL NET TCP CLIENT

Return values

GOAL return status, see chap&B

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetActivate(void
*pTargetHandle)

Description This indication function allows tactivatethe net channekpecified by the handle

Parameters pTargetHandle \ handle for the nethannel

Return values | GOAL return status, see chap&B

Category Mandatory

Prototype GOAL_STATUS_T goal_targetNetDeactivate(void
*pTargetHandle)

Description This indication function allows eactivate the net channel specified by the
handle.

Parameters pTargetHandle | handle for the net channel

Return values | GOAL return status, see chap&B

Category Mandatory

Prototype GOAL_STATUS T goal_targetNetSend(void *pTargetHandle,
GOAL_NET_TYPE_T type, GOAL_NET_ADDR_T *pAddr,
GOAL_BUFFER_T *pBuf)

Description This indication fuation transmit data via the net channel to the TCP/IP stack.

Parameters pTargetHandle | handle for the net channel
type connection type:

1 GOAL_NET UDP_SERVER
1 GOAL_NET UDP_CLIENT

Version:0.1

94/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

1 GOAL_NET_TCP_LISTENER
1 GOAL_NET_TCP_CLIENT
pAddr local and maybe remote address of the net channel
pBuf buffer with the packet to transmit
Return values | GOAL return status, see chap&B
Category Mandatory
Prototype GOAL_STATUS T goal_targetNetOptSet(void *pTargetHandle,
GOAL_NET_TYPE_T type, GOAL_NET_OPTION_T option, void
*pValue)

Description This indication functiomllows to change one property of the net channel.

Parameters pTargetHandle | handle for the net channel

type connection type:

1 GOAL_NET_UDP_SERVER
T GOAL_NET _UDP_CLIENT

1 GOAL_NET_TCP_LISTENER
f GOAL_NET_TCP_CLIENT

option property of the net channel:

1 GOAL_NET_OPTION_NONBLOCK: set socket to non
blocking

GOAL_NET_OPTION_BROADCAST
GOAL_NET_OPTION_TTL
GOAL_NET_OPTION_TOS
GOAL_NET_OPTION_MCAST _IF
GOAL_NET_OPTION_MCAST_ADD
GOAL_NET_OPTION_MCAST_DROP
GOAL_NET_OPTION_REUSEADDR

= =4 =4 8 -8 -4 -9

pValue value of the selected option

Return values | GOAL return status, see chap&B

Category Mandatory

Prototype void goal_targetNetPoll(void)

Description This indication function is called the state GOAL_FSA OPERATION exeopie
controlledactions.

Parameters None

Return values | None

Category Mandatory

Prototype GOAL_BOOL_T goal_targetNetAvail(void)

Description This indication function checks if new data was received.

Version:0.1 95/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Parameters None

Return values | state of received data:
1 GOAL_TRUE: received data available
1 GOAL_FALSE: no data received

Category Mandatory

Prototype GOAL_STATUS T goal_targetNet Cmd GOAL_NET_CMD_T id,
GOAL_BOOL_T wrFlag, void *pArg)

Description This indication funion allows to execute a net command.

Parameters id command identifier

wrFlag access direction
1 GOAL_TRU#Rrite argument
1 GOAL_FALSteadargument

pArg argument to the net command
Return values | GOAL return status, see chap&B
Category mandatory

5.11.5 Command line interfae

Command | netip set <ip> <netmask> <gateway>

Description | Sets theremote IP-address, the netmask and the default gateway of the
underlying TCP/IP stack.

Parameter | <ip> The new IP address in the fornatx. xxx.XxX.XxX
<netmask> The new netmask in the formatx. xxXx.XXX. XXX
<gateway> The new default gateway in the format

XXX XXX XXX XXX

Command | netip show

Description | Prints the remote address consisting of thealdiress, netmask and gateway
address of the underlying TCP/IP stack to the command line interface.

Parameter | hone

5.11.6 Implementation guidelines

5.11.6.1Configure openand activatea net channel

1. All ret channels are created automatically in the state GGAA INIT_GOAhQd the local
addresses are determined.

Version:0.1 96/169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
L - MIDDLEWARE I\ i COMMUNICATION

2. Set thelocallP address in state GOAL_FSA_INIT:

uint32_t ipAddr;

uint32_t netmask;

uint32_t gatewayAddr,;

ipAddr = GOAL_NET_IPV4 192, 168, 0, 100);
netmask = GOAL NET IPV4 255, 255, 255, 0);
gatewayAddr = GOAL_NET_IPV40, 0, 0, 0);

goal netlpSet (ipAddr, netmask, gatewayAddr);

3. Create a callback function to handle actions on the net channel appliespieadific:

void applNetCallback (GOAL_NET_CB_TYPE_T cbType, struct GOAL_NET_CHAN_T pChan,
struct GOAL_BUFFER_T* pBuf) {

e
}
4. Create a handle for the net channel:
GOAL_NET_CHAN_T pNetChanHdl;
5. Create the address information of the net channel:

GOAL_NET_ADDR_T addr;

addr.locallp = ipAddr;

addr.localPort = 1234;

addr.remotelP = GOAL_NET_IPV4 192, 168, 0, 10);
addr.remotePort = 1234;

6. Open a net channel by function goal_netOpen() and specify the remote address and a callback
function:

goal_netOpen (&pNetChanHdl, &addr, GOAL_NET_UDP_CLIENT, applNetCallback);

7. Maybe change a property of the net channel by function goal_netSetOptiemny) configure
the net channel as ncehlocking:

uint32_t optval:
optval = 1;
goal_netSetOption (pNetChanHdIl, GOAL_NET_OPTION_NONBLOCK, &optVal);

8. Activate the net channel by function goal_netActivate()

goal_netActivate (pNetChanHdl);

5.11.6.2Send data

Use a buffer managed about a GOAL queue to transmit data.

Version:0.1 97/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

1. Create a handle for the queue:

GOAL_QUEUE_T pQueueHd;

2. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each
buffer is 20 bytes. The queue has to be created by function goal_queuelnit() in the state
GOAL_FSA_INIT.

goal_queuelnit (&pQueueHdl, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T* pBuf;

4. Take an uninitialized buffer from the queue:

goal_queueGetElem (pQueueHd!, &pBuf);

5. Initialize the buffer and mark the buffer as used:

pBuf - >usage GOAL_ID_QUEUE;

pBuf - >relCh NULL;

pBuf - >pQueue = pQueueHd;

pBuf - >flags = GOAL_QUEUE_FLG_USED;

6. Write a value of 4 bytes to the buffer:

uint32_t value = 0x11223344 ;
pBuf - >ptrData (uint8_t *) &value;
pBuf - >dataLen 4;

7. Send data by function goal_netSend() and receive data via the specified callback function

goal_netSend (pNetChanHdl, pBuf);

8. Close and deactivate the net channel by function goal_netClose()
goal_netCose (pNetChanHdl);

5.12 Queuebuffer pool

This GOAtoremodule provides functions manage a pool of buffersrganized in queuesingle
buffers can be taken frortop of the queue. The buffers can lbead, writtenor clearedby the
application After processing the buffeese returnedat the end ofthe queue.The buffer handling
of a queue is organized as FIRCcesses to the queue and the bufferpistected bythe GOAL
locking mechanism

Version:0.1 98/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

process
|
|
|
|

|
1
take bufferlfrom queue

R [~
@
c
(]

buffer 1

buffer n

return buffer in queue
|

process

Figurel7: queuebuffer handling

It is possible testore buffers to other queues. This method shall only be used in exceptional cases
and shall be used very careful.

The function uggthe queue mechanism is responsible to manage the bs#ad for the buffer
content Each buffer has a header for management purposes, described in clapiP

This module provides the following functions to managedheue

Function in goal_queue | Description \

Version:0.1 99/169

INDUSTRIAL
.a COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Function in goal_queue

Description

goal_queuelnit()

create a queue with buffers

This function alloca&s the memory of a specified numbel
of buffers with the same size arassigns the buffers to th
queue.

It is also possible to create an empty queue without
buffers and to add buffers in the state

GOALFSA OPERATIAON this case thenemory for the
buffersmust be allocated in the state GOASA _INIby
another process.

goal_queuePoolBufsReq()

Initially create free buffers for application specific usage
This function has to be called by each user of a pool. It
tells the queue buffer pool how maruffers the user
requires. There are two paremeters regarding the numb
of buffers. First parameter defines the number of buffers
that are required at any given time. Seconds parameter
defines the number of buffers, that may be required
temporarily additonally. Those temporarily buffers can b
shared between multiple applications.

This function is required if the system pools are used
(goal_queueGetNewBuf).

goal_queueSetReleaseCallback()

specify a callback functidsuffer-related, which is called
by one of the functions goal_queueRelease*()

goal_queueGetNewBuf()

take a buffer from the queuand initialize buffer
Thefollowing buffer properties arnitialized see chapter
5.12.2

flags: GOAL_QUEUE_FLG_USED

dataLen: O

netPort: GOAL_ETH_PORT_HOST

relCb: NULL

pEthBufHdIr: NULL

goal_queueGetElem()

take a buffer from the queue
The buffer can be uninitialized or can contain valid data

goal_queueAddElem()

return a buffer into the queue
The content of the buffer remains unchanged.

goal_qgqueueReleaseBuf()
goal_queueReleaseBufToOrigQueu
goal_queueReleaseBufToNewQueu

It is only allowed to release a buffer if:

1 the release was allowed for this buffer: see chapter
5.12.3 GOAL_QUEUE_FLG_NO_RELEASE

1 content of thebuffer isnot in transmissionsee
chapter5.12.3 GOAL_QUEUE_FLG_TX

If no release callback is specifieg function
goal_queueSetReleaseCallbac{e buffer is returned in

Version:0.1

100169

geal

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Function in goal_queue Description

the desired queue according to the called funatio

1 goal_queueReleaseBuf(): return buffer into the quet
specified in the buffer property pQueue

1 goal queueReleaseBufToOrigQueue(): return buffe
into the queue, which has created the buffer during
goal_queuelnit()

1 goal_queueReleaseBufToNewQueue(): appaulter
to the specified queue in the function call

The flag GOAL_QUEUE_FLG_USED is cleared.

If a release callback is specifieg function
goal_queueSetReleaseCallbac{e callback function is
called and is responsible teturn the buffer into a queue
The content of the buffer remains unchanged.

GOAlfiles:

goal queuelh,c]

example:

not available

5.12.1 Callback functions

GOAL allows to install a callback function to release a buffer to a queue apphspéoific. The
name of the callbackunction is applicatiorspecific.

Prototype GOAL_STATUS_T cbQueueRelFunc(struct GOAL_BUFFER_T *pBuf,
void *pArg)

Description | This callback function allows to do actions by the application before the buffer
return to the specified queue. If thections are finished, the callback function ha
to call one of the functions goal_queueReleaseBuf() or
goal_queueReleaseBufToNewQueue() or goal_queueReleaseBufToOrigQuey
release the buffer.

Parameters | pBuf buffer, which shall be returned
pArg spedfic arguments used by the callback function

Return GOAL return status, see chap&B

values

Category optional
If a callback function isot available, GOAL returns the buffer to the specified
queue.

Registration | during runtime about function goal_queueSetReleaseCallback()

Version:0.1 101/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.12.2 Buffer header

The usage of each buffer can be controlled separdtely the queue managemerty the user of

the queue buffer poolThere are properties available for the buffer management represented by

the structure GOAL_BUFFER_T in code. The structure GOAL_BUFFER_T contains public and private
properties. The user of the queue buffer pool shall only change the public propertiesihsiable

6.

Some properties are also changed by the queue management during initialization-and re

initialization of buffers, se@able6.

Public property of Description
GOALBUFFER_T
dataLen length of the data in bytes, i.e. used bytes of the buffer
This value is cleared by function goal_queueGetNewBuf().
flags bit-coded flags t@ontrol special buffer tasks, see chapter
5.12.3
netPort port numberto the ethernet network,

usable if the GOAL queue mechanism is used for sending i
receiving ethernet frames

etherType type field of the received ethernet franaccording to IEEE
802.3
relCb callback function calledy goal_queueRelease*()

The application can specify a callkdanction by function
goal_queueSetReleaseCallback(). The callback function is
deleted by the function goal_queueGetNewBuf().

tsSec timestamp in s of the received ethernet frame
The availability of a timestamp depends on tlatform.
tsNsec timestamp in ns oft he received ethernet frame

The availability of a timestamp depends on tlatform.

Table6: public elements of queue buffer

5.12.3 Buffer flags

Each buffer oh queue buffer pool can be controlled by the following flags:

Hag of GOAL_BUFFER_T/flag Description

GOAL_QUEUE_FLG_USED | O: buffer is free

1: buffer is used

goal_queueGetNewBuf() set this bit. goal_queueRelease*()
reset this bit.

GOAL_QUEUE_FLG_NO_REL]| 0: buffer can be released
1: buffer must not be released

Version:0.1 102/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Hag of GOAL_BUFFER_T/flag
GOAL_QUEUE_FLG_TX

Description
0: no transmission is active, buffer can be released
1: buffer content is still transmitted, buffer cannot be release
This bit indiates if the received ethernet framases the VLAN
protocol:
0: ethernet frame uses another protocol
1: VLANSs used
This setting corresponds with the property etherType of
GOAL_BUFFER_T.
GOAL_QUEUE_FLG_TIMESTA This bit allows to activate the sending thernet frame with
time stamp:
0: no timestamp is transmitted
1: timestamp is transmitted
This property must be supported by tipgatform.

Table7: control flags of queue buffers

GOAL_QUEUE_FLG_VLAN

5.12.4 Internal queue usage

GOAL uses 3 queues for internal purposes with different memory sizes: small, medium and big.
The number and size of the data buffers can be configured and adapted to the user system.

The number and the size of each internal queue can be configured Blnafablein the CM
module with the moduldD GOAL_ID_QUEUENnovalues for these CMariables are storedh the
nonvolatile memoryGOAL uses default valud$e memory configuration shall only be changed in
a GOAL project if memory optimizations are required.

CMvariablelD 0
CMvariable name | SMALLBUFSIZE

Description size d asmall memory buffer

CM data type GOAL_CM_INT16

Sze 2 bytes

Default value from NVS o GOAL_QUEUE_SMALL_SIZE: 0 byte

CMvariablelD 1
CMvariable name | SMALLBUFNUM
Description amount of small memory buffers
CM data type GOAL_CM_INT16
Sze 2 bytes
Default value from NVS o GOAL_QUEUE_SMALL_NUM: 0 byte
| CMvariablelD |2
Version:0.1 103169

INDUSTRIAL
COMMUNICATION

g.a‘ MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

CMvariable name

MECBURSIZE

Description sizeof a mediummemory buffer

CM data type GOAL_CM_INT16

Sze 2 bytes

Default value from NVS o GOAL_QUEUE_MED_S[ZEyte

CMvariablelD 3

CMvariable name | MEDBUFNUM

Description amount of medium memory buffers

CM data type GOAL_CM_INT16

Sze 2 bytes

Default value from NVS oGOAL_QUEUE_MED_NUM: 0 byte

CMvariablelD 4

CMvariable name | BIGBUFSIZE

Description size of a medium memory buffer

CM data type GOAL_CM_INT16

Sze 2 bytes

Default value from NVS o GOAL_QUEUE_BIG_SIZE: GOAL_NETBUF_SIZE for ether|
TCPI/IP usage, else 0

CMvariablelD 5

CMvariable name | BIGBUFNUM

Description amount of medium memory buffers

CM data type GOAL_CM_INT16

Sze 2 bytes

Default value from NVS oGOAL_QUEUE_BIG_NUM: GOAL_CONFIG_BUF_NUM for

ethernet or TCP/IP usage, else 0

5.12.5 Implementation guidelines

5.12.5.1Get an uninitialized buffer from the queue and add the buffer to the queue

1. Create ahandle for the queue:

GOAL_QUEUE_T pQueueHd;

2. Create a queue witimax. 10buffersand allocate the memory for all buffer§he size of each
buffer is 20 bytes. The queue has to be credigdunction goal_queuelnit() in the state

GOALFSA_INIT

Version:0.1

104169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

goal_qu euelnit (&QueueHd!, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T* pBuUf;

4. Take aruninitialized buffer from the queue:

goal_queueGetElem (pQueueHdl, &pBuf);

5. Initialize the buffer and mark the buffer as used:

pBuf - >dataLen = O;

pBuf - >usage = GOAL_ID_QUEUE;

pBuf - >relCb = NULL

pBuf - >pQueue = pQueueHd;

pBuf - >flags = GOAL_QUEUE_FLG_USED;

6. Use the buffer applicatiospecific.
7. Return the buffer to thesamequeue:

goal_queueAddElem (pQueueHdl, pBuf);

5.12.5.2Get an initialized buffer from the queue and release the buffer without a callback
function

1. Create a handle for the queue:
GOAL_QUEUE_T pQueueHd!;
2. Create a queue with max. 10 buffers and allocatertiremory for all buffers. The size of each

buffer is 20 bytes. The queue has to be created by function goal_queuelnit() in the state
GOAL_FSA_INIT.

goal_queuelnit (&QueueHd!, 10, 10, 20);

3. Create a handle for a buffer:

GOAL_BUFFER_T* pBUf;

4. Take annitialized buffer from the queueThe same queue is specified as return queue. No
callback function is specified.

goal_queueGetNewBuf (&pBuf, pQueueHd!, GOAL_ID_QUEUE);

5. Use the buffer applicatiospecific.

Version:0.1 105169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

6. Release the buffeio the same queue:
goal_que ueReleaseBuf (&pBuf);

5.12.5.3Get an initialized buffer from the queue and release the buffer with a callback function

1. Create an applicatiogpecific callback function to release the buffer:

GOAL_STATUS_TchQueueRelFunc (struct GOAL_BUFFER_T* pBuf, void *pArg) {
é
goal_queueReleaseBuf(&pBuf);

2. Create a handle for the queue:

GOAL_QUEUE_T pQueueHd;

3. Create a queue with max. 10 buffers and allocate the memory for all buffers. The size of each

buffer is 20 bytes. The queue has to be createdumgtion goal_queuelnit() in the state
GOAL_FSA_INIT.

goal_queuelnit (&pQueueHdl, 10, 10, 20);

4. Create a handle for a buffer:

GOAL_BUFFER_T* pBuf;

5. Take an initialized buffer from the queue. The same queue is specified as return queue. No
callbackfunction is specified.

goal_queueGetNewBuf (&Buf, pQueueHd!, GOAL_ID_QUEUE);

6. Register the callback function without arguments for the buffer:

goal_queueSetReleaseCallback (pBuf, cbQueueRelFunc, NULL);
7. Use the buffeapplicationspecific.

8. Return the buffer into the queue by function goal_gueueReleaseBuf(). The function
goal_queueReleaseBuf() calls the callback function and the buffer is returned to the queue.

goal_queueReleaseBuf (&pBuf);

5.13 Ring buffer

This GOAL core module providasactions for ring buffersData of different byte length can be
stored in or loaded from the ring bufféfheaccess to the ring buffer is protected by the GOAL
locking mechaism.

Version:0.1 106169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

A fast writing is supported. This means the GOAL locking mechanism is only applied once. The

following sequenceallows the fast writing:

1. start writing by function goal_rbPut@nd set the parameter flgLockKeep to GOAL_TRUE, the
ring buffer remains locked

2. continue writing for all data by function goal_rbPutFast()

3. release the lock by functiogoal _rbPutFastFinish()

GOAL files:
goal_rb.[h,c]

example:
.\goakapph00410_goalrb

5.14 Task abstraction layer

This GOAL core modutennects the specific operating system to other GOAL componveés
generic abstraction layer. The task abstraction layer allows to cerateshutdownra task, to
configure the task priority and to handle the state machine for the task and requires indication
functions containing the special operating system functidrree indication functions are described
in chapter5.14.2

Task priorities are generalized tize followingcategories:
f GOAL_TASK_PRIO_LOWEST
1 GOAL_TASK PRMEDIUM
1 GOAL_TASK_PRHIGHEST

GOAL files:
goal task[h,c]

example:
X\goalapph00410_goaltask

5.14.1 Configuration

The following compiledefines are available to configure the task abstraction layer:
GOAL_CONFIG_TASK:

0: task abstraction layer is disabled (default)
1: task abstraction layer is enabled

Version:0.1 107/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

5.14.2 Platform API

GOA requires the following indication functioio connect a specific operating system to the task
abstraction layer:

Prototype GOAL_STATUS T goal_tgtTaskCreate(GOAL_TASK T *pTask)
Description Thisindication function allows to create a taskecified by the taskandle.
Parameters pTask | handle for the task
Return values | GOAL return status, see chap&B
Category mandatory
Prototype GOAL_STATUS_T goal_tgtTaskStart(GOAL_TASK_T *pTask)
Description This indication function allows to start the tasgecified by the taskandle.
Parameters pTask | handle for the task
Return values | GOAL return status, see chap&B
Category mandatory
Prototype GOAL_STATUS_T goal_tgtTaskExit(void)
Description This indication function allows to shutdown the current task.
Parameters none
Return values | GOAL return status, see chap&B
Category mandatory
Prototype GOAL_STATUS T goal_tgtTas kMsSleep (uint32_t msReq,
uint32_t *pMsRem)
Description This indication function allowstput the current task to sleep.
Parameters msReq time in ms to sleep
pMsRem returns the remaining time in ms if sleep was interrupted a

this function is available on the specific operating system

Return values

GOAL return status, see chap&B

Category mandatory

Prototype GOAL_STATUS Tgoal_tgtTaskTestSelf(GOAL_TASK T *pTask)

Description This indication function allowstcheck if the ID of the current task matches to
the taskhandle.

Parameters | pTask | handle for the task

Return values | GOAL return status, see chap&B

Category mandatory

Version:0.1 108169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Prototype GOAL_STATUS Tgoal_tgtTaskPrioSet(GOAL_TASK T *pTask,

uint32_t prio)
Description This indication function allows to configure the priority of the specified task.
Parameters pTask handle for the task

Prio desired priority of the task:

1 GOAL_TASK_PRIO_LOWEST
1 GOAL_TASK_PRIO_MEDIUM
1 GOAL_TASK_PRIO_HIGHEST

Return values

GOAL return status, see chap&B

Category mandatory

Prototype GOAL_STATUS T goal_tgtTaskSuspend(GOAL_TASK_T *pTas k)

Description This indication function allows ®uspend the execution of the task specified by,
the taskhandle.

Parameters pTask | handle for the task

Return values | GOAL return status, see chap&B

Category mandatory

Prototype GOAL_STATUS_Tgoal_tgtTaskResume(GOAL_TASK_T *pTask)

Description This indication function allows to resume the execution of the task specified [
the taskhandle.

Parameters pTask | handle for the task

Return values | GOAL return status, see chap&B

Category mandatory

5.15 Timer

This GOAL core module provides functiomneditor:

1 hardtimerswith an operating syster{Figurel8),

1 hard timers without an operating syste(Rigurel9) and

9 softtimers (Figure20).

Hard timers are high prioritized arfthndled interruptcontrolledor operating systerspecific Soft
timers are low prioritized and handled loaqntrolled. Bothkinds of timer base orplatform-
specific timersThe value range of the timers depends on piatform-specific timer
configuration.The standard GOAL systaequires a minimal time period of 1 ms.

The accesses to the GOAL timers are protected by the GOAL locking mechanism.

Version:0.1

109169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

timer handling of timer callback stop timer commanded

function

the operating
system

re-start timer

Figurel8: typical case for hard timer with operating system

timer callback stop timer commanded

timer IRQ

goal_timerRun()

stop timer callback
function

function

re-start timer

Figurel9: typical case for hard timer without operating system

i i stop timer commanded
goal_loop() goal_timerRun() t'mﬁjrniﬁt‘itl:]mk P

Figure20: soft timer handling

The timers can be usas:
1 single shot timer or
i periodictimer

Version:0.1

stop timer callback
function

stop timer callback
function

110169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The timer type can be configured by function goal_timerSetup().

GOAL files:
goal_timer.[h,c] goal timer_cli.c

example:
not available

5.15.1 Callback functions

There are the following callback functions to connecttinger with other functionality:

Prototype void cbTimerFunc(void *pArg)

Description | This callback function is always called if the current time stamp is captured.

Parameter pArg | specific arguments used by the callback function
Return none
values

Category Mandatory

Registration | during runtimevia function goal_timerSetup()

Prototype void cbStopTimerFunc(void *pArg)

Description | This function is called once if the timer is stopped.

Parameter pArg | specific arguments used by the callbdghkction
Return none
values

Category optional
If acallback function is not available, GOAL deletes the timer.

Registration | during runtimeviafunction goal_timerStopChb()

5.15.2 Platform API

GOAL requires the following indication function to managpasform-specific timer as base for
GOAL timers:

Prototype GOAL_STATUS_T goal_targetTimerlnit(void)

Description This indication function initializes a platforspecific timer and is called in stage
GOAL_STAGE_TIMER_PRteistate GOAL_FSA_INIT_GOAL.

Parameters none

Return values | GOAL return status, see chap&B

Category mandatory

Version:0.1 111/169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

pert

| Condition | none
Prototype GOAL_STATUS T goal target TimerCreate (GOAL_TIMER T
*
pTmr)
Description This indicatiorfunction creates glatform-specific timer for a GOAlard timet
Parameters pTmr | handle for the GOAhardtimer

Return values

GOAL return status, see chap&B

Category mandatoryfor GOAL hard timers
Condition none
Prototype GOAL_STATUS T goal_targetTimerDelete(GOAL_TIMER_T
*pTmr)
Description This indication functioudleletes aplatform-specific timer for a GOAL hard timer.
Parameters pTmr | handle for the GOAL hard timer

Return values

GOAL return status, see chap&B

Category mandatory for GOAL hard timers

Condition none

Prototype GOAL_STATUS T goal_targetTimer Start (GOAL_TIMER_T *pTmr)
Description This indication functiostarts a platformspecific timer for a GOAL hard timer.
Parameters pTmr | handle for the GOAL hard timer

Return values

GOAL return status, see chap&B

Category mandatory for GOAL hard timers

Condition none

Prototype GOAL_STATUS _T goal_targetTimerStop(GOAL_TIMER_T *pTmr)
Description This indication function stops@atform-specific timer for a GOAL hard timer.
Parameters | pTmr | handle for the GOAL hard timer

Return values

GOAL return status, see chap&B

Category mandatory for GOAL hard timers

Condition none

5.15.3 Command line interface

Command | time current

Description | Prints the current timestamp of the GOAL system to the command line interfg
Parameter | hone

Version:0.1

112/169

7 \ INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

5.15.4 Implementation guidelines
5.15.4.1Use aperiodic soft timer and start the timer immediately
1. Create a handle for the timer:

GOAL_TIMER_T * pSoftTimer;

2. Create asofttimer of low priority in state GOAL_FSA_INIT:

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);

3. The soft timershall be triggered every 1000 ms periodically and shall be started immediately.
The timer is configured as follow:

goal_timerSetup (pSoftTimer, GOAL_TIMER_PERIODIC, 1000, cbTimerFunc, NULL,
GOAL_TRUE);

4. The callback functiois called if the timer is expirexbain and again

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);
goal_timerSetup (pSoftTimer, GOAL_TIMER_PERIODIC, 1000, cbTimerFunc, NULL,
GOAL_TRUE);

5. Stopthe timer without calling a callback function after it is expired the next time:

goal_timerStop (pSoftTimer);

6. Delete the timer:

goal_timerDelete (&pSoftTimer);

5.15.4.2Use a single soft timer and start the timer in the application

1. Create a handle for themer:

GOAL_TIMER_T * pSoftTimer,;

2. Create a soft timer of low priority in state GOAL_FSA_INIT:

goal_timerCreate (&pSoftTimer, GOAL_TIMER_LOW);

3. The soft timer shall be triggered only once after 1000 ms and shall be started by the
application. Theimer is configured as follow:

Version:0.1 113169

7 \ INDUSTRIAL) \ PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
£ - MIDDLEWARE I\ i COMMUNICATION

goal_timerSetup (pSoftTimer, GOAL_TIMER_SINGLE, 1000, cbTimerFunc, NULL,
GOAL_FALSE);

4. Start the timer in the applicatian

goal_timerStart (pSoftTimer);
5. Stop the timemwithout calling a callback function
goal_timerStop (pSoftTimer);

6. Delete the timer:
goal_timerDelete (&pSoftTimer);

5.15.4.3Stophard timer with callback function

1. Create a handle for the timer:

GOAL_TIMER_T * pHardTimer;

2. Create ahardtimer of high priority in state GOAL_FSA_INIT:

goal_timerCreate (&pHardTimer, GOAL_TIMER_HIGH);

3. The hard timer shall be triggered every 1000 ms periodically and shall be started immediately.
The timer is configured as follow:

goal_timerSetup (pHardTimer, GOAL_TIMER_PE RIODIC, 1000, cbTimerFunc, NULL,
GOAL_TRUE);

4. The callback function is called if the timer is expired again and again.
5. Stop the timer with calling a callback function:
goal_timerStopChb (pHardTimer, cbStopTimerFunc, NULD);

6. Delete the timer:

goal_timerDelete(&pHardTimer);

5.16 Tracing

This GOAL core module provideacrosfor tracing data via a configurabieterface Helpful for
getting additional information about the system on debugging or setting reference pins for e.g.
timing analysis. Tracing data is disabled by default.

| Macro | GOAL_TGT_TRACES(_chan, _data) |

Version:0.1 114169

geal

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Description | tracing an &bit value

Parameters| _chan output channel
_data data value

Category | Optional

Condition | Compilerdefine GOAL_CONFIG_TGT_TRA®E be set to 1 and a tracing
interface has to be enabled.

Macro GOAL_TGT_TRAGE chan, data)

Description | tracing a 1ébit value

Parameters| _chan output channel
_data data value

Category | Optional

Condition | Compilerdefine GOAL_CONFIG_TGT_TRA®E be set to 1 and a tracing
interface has to be enabled.

Macro GOAL_TGT_TRACE32(_chan, _data)

Description | tracing a 32bit value

Parameters| chan output channel
_data data value

Category | Optional

Condition | Compilerdefine GOAL_CONFIG_TGT_TRA®E be set to 1 and a tracing
interface has to be enabled.

Macro GOAL_TGT_TRAGET SHTchan, bit)

L Setting a single bit on the tracing data. Keeping the other bits unchanged.

Description . ’ . 2
feature s available for tracing via pin only.

Parameters| _chan output channel
_bit bit position

Category | Optional

Condition | Compilerdefine GOAL_CONFIG_TGT_TRAME
GOAL_CONFIG_TGT_TRACHn#sNbe set to 1.

Macro GOAL_TGT_TRAGET CLRchan, bit)

o Clearing a single bit on the tracing data. Keeping the other bits unchangec

Description : : : o
feature is available for tracing via pin only.

Parameters| _chan output channel
_bit bit position

Category | Optional

Condition | Compilerdefine GOAL_CONFIG_TGT_TR&ME

GOAL_CONFIG_TGT_TRACEn®ihbe set to 1.

Version:0.1

115169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5.16.1 Tracing via ITM

Thelnstrumentation Trace MacrocgllTM) is a special ARM featyseoviding a tracing interface
for output data via debugger.

Handling single data bits B&yOAL_TGT_TRAGEI _SEdr GOAL_TGT_TRAGEI CLR not
implemented at this version.

5.16.2 Tracing vigpin

Outputs the data on pind’he number and choice ginsis boardspecific and may not be available
on all systems.

A Please verify, that the configured tracing pins are free to use before enabling this GOAL
feature.

There are no different output channels, so thehanargument at the macros will not be
considered.

5.16.3 Configuration

The following defines enable the tracing module and its interface.

GOAL_CONFIG_TGT_TRACE
0: tracing is switched off for the complete GOAL system (default)
1: tracing is switched on for the complete GOAL system

GOAL_CONFIG_TGT_TRACE_PIN
0: tracing the data via board specific pins is switched off (default)
1: tracing the data via board specific pins is switched on. The number and choice of
pinsis configuredhe board.Please read sectidh 16.2Tracing vigoin before
enabling this featus.

GOAL_CONFIG_TGT_TRACE_ITM:
0: tracing the data via ITM is switched off (default)
1: tracing the data via ITM is switched on.

GOAL_CONFIG_TGT_TRACE_ITM_WITHOUT_PC
0: tracing the data via ITMith no additional information about the program

counter (default)
1: tracing the data via ITMext to the program counter when tracing

5.17 Utility functions

Version:0.1 116169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

This GOAL core module provides utility functions for the Gsystemfor:
1 the CRC calculation according to the FleteB2malgorithm
1 the generation of random values

GOAL files:
goal_util.[h,c]

Version:0.1 117/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

6 GOAL mdia(goal_media)

The directorygoal_media contains:
1 mediaadapters generic driver interface
1 mediainterfaces generic interfaces between media adapters and higher layers

One source and one header files exist for each GOAL media module. Only the sources for the
necessary GOAmnedia modules shall be integrated in the compiteoject of the GOAL system

The registration is described in chap#R2.2 The functions are described in detail the GOAL
Reference Manual.

Figure21 demonstrates the easy exchange of drivers.

higher layer @ higher layer {]
write to write to write to write to
1st MA-ID) 2nd MA-ID 1st MA-ID) 2nd MA_ID
MA-SPI @ MA-SPI 3:]
write to RIN32M3 CSI(] write to RIN32M3 CSI1 write to S7 SPI chan 0 write to S7 SPI chan 1

DRV-SPI RIN32M3@ DRV-SPI RIN32M3€] DRV-SPI Synergy S{] DRV-SPI Synergy {]
Cslo Csl1 SPI channel 0 SPI channel 1

Figure21: media adapter for SPI

6.1 Nonvolatile storage

GOAL provides a medi@apter and media interfactr the nonvolatile storage usable for program
downloads and uploads by a bootloader or floe nonvolatile storage afonfiguration data. The
nonvolatile storagaenediaallows:

i to write data to the nonvolatile memory,

i toread data from the nonvolatile memory and

i to erase the nonvolatile memory.

6.1.1 NVS media interface

Version:0.1 118169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The media adapter is registered to the madhiterface by function goal_miNvsReg(). The resource
Gbx{ YSRAI AYOGSNFI OS¢ Ydzad o06S Ftft20FiSR o0& 7¥dz
freed by function goal_miNvsFree().

The media interface allows to manage singlenmoey ranges, called regiongherewith it is

possible to assign different memory ranges to various processes and to control the access to the
nonvolatile memory processpecific.Each regiois identified by an ID, called NNVSREGIOND,
unique. This I@an be specifiedpplicationspecific. But each ID must only exist once. During
registration a unique handle is created for eachNMSREGIOND. Each region has toe

registeredto the media interface for nonvolatile storage by higher layarthe state
GOAL_FSA_INANTregion has the following properties:

Property of NVS region Description
offset start addresof the memory regionvalue range: uint32_t
length length of the memory region in bytes, value range: uint32_t
strName name of the file for the nonvolatile storage about the file system for

each memory region, strName igzarcterminated string of the length
of GOAL_MI_REGION_NAME_LENG®irtes(defadt: 255 byte)

mode storage mode:

1 GOAL_MI_NVS_REGION_MODE_COMRbo&d/Bave the
complete memory region

1 GOAL_MI_NVS_REGION_MODE_STREAM: load/save single (
within the memory region, data is addressable about an additior
offset

1 GOAL_MI_NVS_REGION_MODE_BUFFERED: load/save to th
region is handled through a memory buffer. Writing to the physig
medium is decoupled by sequentially writing elements.

access access right at the region:

1 GOAL_MI_NVS REGION_ACCESS_READ: regiom#&iablg

1 GOAL_MI_NVS_ REGION_ACCESS_WRITE: region is writable
readable

Table8: properties of NVS regions
6.1.1.1 Implementation guidelines

6.1.1.1.1 Registratiorof a memory region

1. Specify a regioand define a MNVSREGIOND:
#define GOAL_ID_MI_NVS_REGION_CONFIG_DATA 2

2. Create a MAandle:
GOAL_MA_NVS_T *pMaNuvs;

3. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter
by itself.

Version:0.1 119169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

4. Create a Mhandle:
GOA_MI_NVS_T *pMiNvsHdI;

5. Register the media interface:
goal_miNvsReg(&pMiNvsHdl);

6. Allocate the NVS service:
goal_miNvsAlloc(pMiNvsHdI);

7. Createa MI-NVSREGIOMandle:
GOAL_MI_NVS_REGION_T *pRegio n;

8. Register and configure the memory region: Themory range starts at address 0x0O001FFF and
has a length of 0x100 byt&he region shall complete. Configurtion data shall be read and

written.

goal_miNvsRegRegion(&pRegion, pMiNvsHdI, pMaNvsHdI, 0x0001FFF, 0x00000100 |,
Afconfdat ao,
GOAL_ID_MI_NVS_REGION_CONFIG_DATA

/* set mode */
goal_miNvsSetMode(pRegion, GOAL_MI_NVS_REGION_MODE_COMPLETE

/* set access rights */
goal_miNvsSetAccess(pRegion, GOAL_MI_NVS_REGION_ACCESS_WRIJE

6.1.1.1.2 Write data to nonvolatile memory

1. Load MINVSREGIOMandleof the memory region with the ID

GOAL_ID_MI_NVS_REGION_CONFIG;. DATA
GOAL_MI_NVS_REGION_T *pRegion;
goal_miNvsRegionGetByld(&pRegion, GOAL_ID_MI_NVS_REGION_CONFIG_DATA

2. Erasehe nonvolatilememory region:
goal_miNvsErase(pRegion);

3. Write dataof size byteso nonvolatile memory region:
goal_miNvsWrite(pRegion, (uint8_t *) pData,0, size);

6.1.1.1.3 Read data from nonvolatile memory

1. Load MINVSREGIOMandleof the memory region with the ID

GOAL_ID_MI_NVS_REGION_CONFIG, DATA
GOAL_MI_NVS_REGION_T *pRegion;
goal_miNvsRegionGetByld(&pRegion, GOAL_ID_MI_NVS_REGION_CONFIG_DATA

2. Read data from nonvolatile memory:
goal_miNvsRead(&pRegion, (uint8_t *) pData, 0, size);

Version:0.1 120/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

6.1.2 NVS media adapter

The selected NVS drivergisters itself to the NVS media adapter.

6.1.2.1 Implementation guidelines

These implementation guidelines refer to the case, that no NVS media interface is used.

6.1.2.1.1 Write data to nonvolatile memory

1. Create a MAhandle:
GOAL_MA _NVS_T *pMaNvsid! ;

2. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter
by itself.

3. Create a NVS description:
GOAL_MA_NVS_DESC_T desc = {
.strName = Aconfig datahf,
.fCompleteAccess = GOAL_TRUE}

4. Erase0x100 bytes irthe nonvolatile memoryrom start address Ox0001FFF
goal_maNvsErase (pMaNvsHdl, &desc, 0OX0O001FFF, 0x100);

5. Write 0x100 bytes from the buffer pData to the nonvolatile memory on start address

Ox0001FFF:
goal_maNvsWrite(pMaNvsHdI, &des ¢, OX0001FFF, (uint8_t *) pData, 0x100);

6.1.2.1.2 Read data from nonvolatile memory

1. Create a MAhandle:
GOAL_MA_NVS_T *pMaNvsHdl;

2. Select the suitable NVS driver and initialize the driver. The driver registers to the media adapter
by itself.

3. Create a NV8escription:
GOAL_MA _NVS_DESC_T desc = {
.strName = Aconfig datai,
.fCompleteAccess = GOAL_TRUE}

4. Read 0x100 bytes from the start address OxO001FFFF in the nonvolatile memory and store the

data in pData:
goal_maNvsRead(pMaNvsHdl, &desc, 0Ox0001FFFF, (uint8_t *)pData, 0x100);

Version:0.1 121/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

6.2 LED

GOAL provides a media adapter for the controlling of LEfasdardized communication protocols
often need status LEDShe application can also use the LED media adapter to control LEDs
applicationspecific. The media adater for LEDs allows to handle

1 single LED&nd

1 groups of LEDs

The used hardware resources for the controlling of LEDs are encapsulated in the LE&ndriver
depends on thelatform. Details are described in the suitable GOAL Platform Manual. It is gossibl
to control the LEDs via GPIOs or about a serial bus as IIC.

The media adapter provides the following functionality:
1 open/close a media adapter for a single LED or a group of LEDs
1 get/set the state of a single LED
1 get/set the state of a group of LED
The getfunctions require, that the current LED state is readable fromptlagform.

The connection between the LED driver and the LED media adapter is identified biDa MA
unique. The determination of the MM is described in the suitable GOAL Platfddanual. The

most LED drivers uses a NIA created by the applicatioithe application has to assign single LEDs
andor groups of LEDs to MWs during theplatform initialization in the state GOAL_FSA_INIT.

A group of LEDs can consist of maximal 32 L'Biesmask and state valbeve data type uint32_t
andare bitcoded. Each LED in the LED group shall use the same bit position in the mask and state
value.The interpretation of the bit values of the LED statgglagform-specific. Maybe the

application has to consider the polarity of the LED®bit values for the mask are defined as

follow:

Bit value Meaning for LED group mask
0 LED is ignored and remains unchanged
1 LED is changed according to the desstade bit

Table9: maskbit codingfor groups of LEDs

6.2.1 Implementation guidelines

6.2.1.1 Switch on/off and get the state of a single LED

1. Define a MAD for a single LED:
#define GOAL_MA_LED_APPL_SINGLE_LED 1

2. Call the LED driver function to initialize the LED hardware resource and to register the LED
driverfor a single LE® the LED media adapter in state GOAL_FSA_INIT.

Version:0.1 122/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

. Open a media adapter instance and get the-8IRI handle:
GOAL_MA_LED_T*pMalLedHdl; /*MA - LED handle */
goal_maledOpen(GOAL_MA_LED_APPL_SINGLE_LED, &pMaLedHdl);

. Switch on the LED:

GOAL_MA_LED_STATE_T state = GOAL_MA_LED_STATE_ON;
goal_maledSet(pMaLedHdI, &state);

. Get the current state of the LED:

goal_maledGet(pMaLedHdl , &state);

. Close the media adapter instance:
goal_malLedClose(pMaLedHd!);

6.2.1.2 Switch on/off and get the state of a LED group

A group of 32 LEDs shall be controlled.

1. Define a MAID for a group of LEDs:

#define GOAL_MA_LED_APPL_GROUP_LED 2

. Call the LE@river function to initialize the hardware resource for all LEDs and to register the
LED driver for a group of LEDs to the LED media adapter in state GOAL_FSA_INIT.

. Open a media adapter instance and get the-8IRl handle:
GOAL_MA_LED_T*pMaLedHdl; /*MA - LED handle */
goal_malLedOpen(GOAL_MA_LED_APPL_GROUP_LED, &pMaledHdl);

. Switch on the LEDs assigned to bitZ3tl do not change the LEDs assigned to bit@3switch

off LEDs assigned to bit-05
uint32_t mask = OXFFOOFFFF;
uint32_t state = OxFF000000;
goal_maledGroupSet(pMaLedHdI|, &mask, &state);

. Get the current state of all LEDs in the LED group:
goal_malLedGroupGet(pMaLedHdI, &state);

. Close the media adapter instance:
goal_malLedClose(pMalLedHdl);

6.3 SPI

GOAL provides a media adapfer the SPI communication. The media adapter provides the
following functionality:

1 open/close a media adapter for a SfPlannel
1 get/set a general SRbnfiguration

Version:0.1 123169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

read data from the SFius

write data to the SPibus

write and read data to/from the&SPibus
report events to higher layers

= =4 —a -9

GOAL defines the following general SPI configuration settings:

SPlonfiguration Description
setting
according to
GOAL_MA_SPI_CONH

type type of the SPI communication:
1 GOAL_MA_SPI_TYPE_MASTER
 GOAL_MA _SPI_TYPE_SLAVE

mode combination of clock polarity and phase as SPI mode:
1 GOAL_MA_SPI_MODE_0
1 GOAL_MA_SPI_MODE 1
1 GOAL_MA_SPI_MODE_2
1 GOAL_MA_SPI_MODE_3

bitrate SPI baudrate in Hz

unitsize size of transferred data must be a multiple of unitsize:

1 GOAL_MA_SPI_UNITWIDTH_8BIT,

1 GOAL_MA_SPI_UNITWIDTH_16BIT,

1 GOAL_MA_SPI_UNITWIDTH_32BIT
The minimal size must be equal to the data transfer length of the SP
controller at least.

bitorder bit order of the transferred data via the SPI bus:
1 GOAL_MA _SPI BITORDER_MSB,
1 GOAL_MA _SPI BITORDER_LSB

TablelQ: general SRionfiguration settings

The SRtonfiguration can be set by function goal_maSpiConfigSet(). The currectr8iguration
can be read by function goal_r8pConfigGet()The support 6the SPtonfiguration settings
depends on the SPI driver and the SPI control@etails are described in the suitable GOAL
Platform Manual.

SPI gents are handled everdriven about an applicatiospecific callback functiof.he supported
events depend on the SPI driver and the availability orSRécontrollelGOAL provides the
following events:

Bvent number Description
accordirg to GOAL_MA _SPI_ EVENT_T

GOAL_MA_SPI_EVENT_TRANSFER_COMP| The SPI controller reports, that the data

Version:0.1 124/169

INDUSTRIAL
COMMUNICATION
MIDDLEWARE

geal

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Bvent number
accordirg to GOAL_MA_SPI_EVENT_T

Description

transfer is completed.

GOAL_MA_SPI_EVENT_TRANSFER_ABOR]

The SPI controller reports, that the data
transfer is aborted.

GOAL_MA_SPI_EVENT_MODE_FAULT

The SPI controller reports an ermuring
configuration of theplatform-specific SPI
mode.

GOAL_MA_SPI_EVENT READ_OVERFLOW

The SP controller reports a read overflow.

GOAL_MA_SPI_EVENT_ERR_PARITY

The SPI controller on th@atform repots a
parity error.

GOAL_MA_SPI_EVENT_ERR_DATA_CONSI

The SPI controller on th@atform supports a
data consistency check. The data consistenc]
check is active and reports an error.

GOAL_MA_SPI_EVENT_ERR_OVERFLOW

The SPI controller works in a buffered mode
and reports an overflow of the buffers.

GOAL_MA_SPI_EVENT_ERR_OVERRUN

The SPI contiler reports an overrun during
reception of data.

GOAL_MA_SPI_EVENT_ERR_BUF_OVERR|

The internal SP1 message buffer in the driver
overflows.

GOAL_MA_SPI_EVENT_ERR_FRAMING

The SPI controller reports a framing error.

GOAL_MA_SPI_EVENT_MODE_UNDERRUN

The SPcontroller reports an underrunf it
works as SPI slave and no transmission datal
preparedand a serial transfer was initiated by
the SPI master.

Tablel1: general SPI events

The connection between the SPI driver and the SPI media adapter is identified byCauwifgue.

The determination of the MAD is described in the suitable GOAL Platform Manual. The most SPI

drivers determine the MAD by itself.

6.3.1 Callbackfunctions

Prototype GOAL_STATUS_T cbM&piEvent (struct GOAL_MA SPI. T
*pMaSpiHdl, GOAL_MA_SPI_EVENT_T event, void *pArg)
Description | This callback function alled if anSPlevent was occurred in the SPI driver to
inform higher layers.
Parameters | pMaSpiHdlI handle of the media adapter
event number of the occurred evenseeTablell
pArg specific arguments used by the callback function
Return GOAL return status, see chap&B
values
Version:0.1 125169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Category mandatory

Registration | during runtime about function goal_maSpiOpen()

6.3.2 Implementation guidelines

6.3.2.1 Read and write data via the SH®lus

1. Call the SPI driver function to initialize the Sl controller and to registe6Sfkedriver to the SPI
media adaptetin state GOAL_FSA_INDTring this guideline GOAL_MA ID_SPI is used to mark
the MAID.During the registration a unique M8PI handle is created.

2. Implement a callback function to handle SPI events:

GOAL_STATUS_T chAppl MaSpiEvent(struct GOAL_MA_SPI_T *pMaSpiHdl, GOAL_MA_SPI_EVENT_T
event, void *pArg) {

e
}
3. Open the media adaptespecify the callback function to handle SPI evants get the MASPI

handle

GOAL_MA_SPI_T *pMaSpiHdI;
goal_maSpiOpen(GOL_MA_SPI_ID, &MaSpiHdIl, cbApplMaSpiEvent , NULL);

4. Write 4 byte stored in pData to the SBus:
goal_maSpiWrite(pMaSpiHdI, (uint8_t *)pData, 4);
5. Read data from the SBUs and store the data to pData:

uintl6_tlen; /* length of read d ata in bytes */
goal_maSpiRead(pMaSpiHdl, (uint8_t *)pData, &len);

6. Write 4 byte stored in pWriteData to the SIRis and read data from SPusand store the read
data to pReadDatat the same time:

untl6_t len; /* length of data to write as input parame ter and length of read data
as output in bytes */

len = 4,

goal_maSpiWriteRead(pMaSpiHdI, pWriteData, pReadData, &len);

6.3.2.2 Configure the SPI interface

1. Get the current general SPI configuratioinan opened MA

GOAL_MA_SPI_CONF_T spiConfig;
goal_maSpiC onfigGet(pMaSpiHdI, &spiConfig);

Version:0.1 126169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

2. Specify SPI mode O:
spiConfig.mode = GOAL_MA_SPI_MODE_0;
3. Set SPI configuration:

goal_maSpiConfigSet(pMaSpiHdl, &spiConfig);

6.3.2.3 Handle SPI events

1. Call the SPI driver function to initialize the Sl controller tanetgister the SPI driver to the SPI
media adapter in state GOAL_FSA_INIT. During this guideline GOAL_MA _ID_SPI is used to mark
the MAID. During the registration a unique M3PI handle is created.

2. Implement a callback function to handle Rénts:

GOAL_STATUS_T cbAppIMaSpiEvent(struct GOAL_MA_SPI_T *pMaSpiHdl, GOAL_MA_SPI_EVENT_T
event, void *pArg) {
if (GOAL_MA_SPI_ EVENT_ERR_OVERRUN == event) {
é

}
elseif(GOAL_MA_SPI_EVENT_ERR_PARITY:= event) {
é

else {
/* handle unknown events application - specific *
}

}

3. Open the media adapter, specify the callback function to handle SPI events and getiBBIMA
handle:

GOAL_MA_SPI_T *pMaSpiHdI;
goal_maSpiOpen(GOL_MA_SPI_ID, &pMaSpiHdl, cbApplMa SpiEvent, NULL);

4. If a SPI event occurs, the callback functbApplMaSpiEvent is called.

6.4 TLS

GOAL providesfainctionalityfor enayption and authenticatiorof TCP packetsn the base of the
Transport Layer Security (TLS) protdéalS_RFG246/. The functionality of TLS requires:

1 aTLS library,

1 a GOAL driver for the integration of the TLS library into the GOAL system and

1 a GOAL media adapter for TLS in order to use a generic interface for TLS in the application.
GOAL allows to implement varioulsraries for cryptographic and transport layer security
capabilities.The GOAL TLS media adapter makes it possible to exchange the TLS library with less
effort. The TLS functionality is embedded into the GOAL core module for the network handling.

Version:0.1 127/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

The TLS functionality comprises:
1 encryption/decryption of TCP packets and
1 the authentication by a X506&ertificate.

goal_net @

GOAL net
net g] channel TLS @
'
'
' '
' l
' '
'
:
decrypted data
encrypted da

Figure22: integration of TLS

GOAL net .. @
channel (TLY) application

ethernet bus goal eth 3:] GOAL eth channel

The authentication is realized layX509certificate Theapplication can specifgn ownprivate key
and an ownX509certificate by function goal_maTlsOpen(he private key must have a length
between 1024 bit and 2048 bif. no X50%certificate is spefied a default certificate is takeifhe
default certificate igort-specific.

TheGOALTLSnedia adaptemallows
1 to open/closea GOAL TLchanneland
1 to getinformation from theXx509certificateabout the certification authority, the
organization providing the weberver and the validity period
The encryption and decrypticsre made by the TLS library internally.

example:
X\goaklapph00410_goaltls*

6.4.1 Configuration
The followingcompilerdefines are available to configure TLS:
GOAL_TLS:

0: TLS is disabled (default)
1: TLS is enabled

6.4.2 mbed TLS libny

GOAL supports the open source library mbed Th8 following sources must be added to the
compilerproject:

Version:0.1 128169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

source location

mbed TLS library X\goahext\ mbedtls*

GOAL driver fothe mbed TLS librar| X\goahkplat\drAtls\mbedtls

TheGOAL driver fothe mbedTLSibrary providesthe following functiorfor the registration to the
GOALTLSnedia adapter

Prototype GOAL_STATUS_T goal_tlsMbedtlsInit(GOAL_MA _TLS_T
**ppTIsHdI, unsigned int mald)

Description | This functiorregisters theGOAL driver for the mbed Tlil&ary, i.e. the driver
functions for initialization, opening a TLS channel and getting information from
X509v3certificate are made known in the GOAL TLS media adapter.

Parameters | ppTIsHdI handle for the TLS instance
mald MA-ID for the TLS instance
Return GOAL return status, see chap&B
values
Calling in state GOAL_FSA_INIT_GOAL, stage GOAL_STAGE_TARGET_PRE

(normally during the board in#lization, see
goal _target board.c/goal_targetBoardinit())

The application has to specify a MIB. There is no drivespecific rule for the construction of the
MA-ID.

The execution of the algorithm f@ncryption/decryption needs some time andogcessed in an
own task to allow, that the algorithm can be interrupted by functions with higher priority. This
method requires an operating system.

The function goal_maTlIslnit() installs the initialization function of the GRA&Ldriver in the
staging tableThe initialization function of the GOAL TLS driver is called by @GGtate
GOAL_FSA_INIT_GOAL in stage GOAL_STAGE_MODULES.

The opening function of the GOAL TLS driveresued by function goal_maTIlsOpenQhe
application has to call the function goal_maTlsOpen() in the state GOAL_FSA _INITToSETUP
initialize ando open thechannels.

The function for getting information from th&€509certificate the GOAL TLS driver function is

mapped to the function goal_maTIsReadInfo(). The function goal_maTIsReadInfo() is called by the
application in the state GOAL_FSAEBRTION.

6.4.3 Implementation guidelines

6.4.3.1 Initialize TLS

Version:0.1 129169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

This example uses the mbed TLS library
1. Define a MAID.

#define APPL_MA_TLS_ID 1

2. Integrate the initialization ofhe GOALTLSnedia adaptein the stage GOAL_STAGE_MODULES
in applicationspecific functiorappl_init().

GOAL_STATUS_T appl_init (void) {
goal_maTIsInit(APPL_MA_TLS_ID);
}
3. Create a handle for the TLS instance

GOAL_MA_TLS_T *pTIsHdI;

4. Execute the specific function tegisterthe GOAL driver for the selected TLS libtarthe
GOAL TLS media adaptdormally this function is called during the initialization of the board
in state GOAL_FSA_INIT_GOAL in <l STAGE_TARGET, PRE

goal_tisMbedtlsinit(&pTIsHdl, APPL_MA_TLS_ID);

5. Create a GOAL net channel for the output of the GDAInmedia adapter.

GOAL_NET_CHAN_T pNetChanHdl;

GOAL_NET_ADDR_T netChanAddr;

GOAL_MEMSET(&netChanAddr, 0, sizeof(GOAL_NET_ADDR_T);

addr.localPort = 443 ;

goal_ netOpen(&pNet ChanHdl, &netChanAddr, GOAL_NET_TCP_LISTENER, NULL);

6. Configure the GOAL net channel as +ibocking.

uint32_t optval = 1;
goal_netSetOption(pNet ChanHdl, GOAL_NET_OPTION_NONBLOCK, &optVal);

7. Get the handle for the TLS channel determined by thelB®lAnd open the 0S channel.
GOAL_NET_CHAN_T pTIsChanHdI;

goal_maTlsGetByld(&pTIsHdI, APPL_MA_TLS_ID);
goal_maTlsOpen(pTIsHdl, NULL, &pTlsChanHdl, pNetChanHdl);

8. Connect the GOAL net channel (TLS) to the GOAL net channel and specify a callback function to
handlepackets from the TCP client.

goal_netOpenTunnel(NULL, pTlIs ChanHdl, applTIsClearDataCb, NULL, NULL)

9. Create a callback function to handle packets from the TCP ctieatchapteb.11.2function
cbNetFunc().

void applTIsClearDataCh(GOAL_NET_CB_TYPE_T cbType, GOAL_NET_CHAN_T *pChan, struct

Version:0.1 130/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

GOAL_BUFFER_T *pBuf) {
é

}

6.4.3.2 Use a TLS channel

1. TCP/IP packets are transmitted and rneeel encryptedOnly valid TCP/IP packages pass the TLS
module.

2. Information from the certificate can be required.
uint8_t certinfo[128];
goal_maTlsReadInfo(pTIsHdl, GOAL_CERTINFO_CA_CN, certinfo, 128);

6.5 CMFS

CMFS is a media interfaamrking on top of the NVS media interface. It requires 2 serparate NVS
regions for storing CM variables. Despite the plain CM implementation, which stores the whole CM
variable store as a binary blob in flash, CMFS only writesfitatibns to the NVS region. Thereby

the NVS region is sequientially written, thus a time consuming erase of the NVS region is not
required. However if the NVS region is nearly fully written, the current state of variables is
transferred to the secondarVS region, where all continuing write operations take place.

This CMFS has some advantages over the plan CM implementation:
- NVS write operations can be performed much faster
- Data loss during reset while NVS is written can be omitted

To achive this, morblVS storage space needs to be reserved.

When CMFS is enabled, the NVS region with ID
GOAL_ID_MI_NVS_REGION_CMCONFIG is not required anymore.

6.5.1 Integration of CMFS

Following except from goal_target_board.c shows integration of CMFS.

#include <goal_media/goal_mi_cmfs.h>

static GOAL_MI_NVS_REGION_LIST_T region_list 0 =¢{
{
.posStart = 0x01FCO0000 ,
Jength = 0x00020000 |,
.strName = "goal_cmfs_nvsl.bin" ,

id = GOAL_ID_MI_NVS_REGION_CMFS1,
.mode = GOAL_MI_NVS_REGION_MODE_STREAM,
.access = GOAL_MI_NVS_REGION_ACCESS_WRITE

.posStart = 0x01FEO0000 ,

Version:0.1 131/169

7 N INDUSTRIAL =)Y PROFESSIONAL
.a COMMUNICATION INDUSTRIAL
- MIDDLEWARE I\ i COMMUNICATION

.length = 0x00020000 , /* 128k kByte */

.strName = "goal_cmfs_nvs2.bin" ,

id = GOAL_ID_MI_NVS_REGION_CMFS2,

.mode = GOAL_MI_NVS_REGION_MODE_STREAM,
.access = GOAL_MI_NVS_REGION_ACCESS_WRITE

h

/ /
/** Board init

*

* Low level board initialization.

*

* @return GOAL_OK - success
* @return GOAL_ERR_BOARD_INIT - error initializing board
*/
GOAL_STATUS_Tgoal_targetBoardInit (
void
%
GOAL_STATUS_Tres = GOAL_OK; I* result */
GOAL_MI_CMFS_T*pMiCmfs = NULL; [* CMFS handle */
GOAL_MI_NVS_T * pMiNvs; I* NVS MI handle */

[* register NVS MI with regions */
if (GOAL_RES_Offes)) {
[* register a new nvs MI */
res = goal_miNvsReg (&MiNvs, GOAL_ID_MA_NVS_EEPROM_ETHERCAT,
eeprom_region_list, ARRAY_ELEMENT&eprom_region_list));

[* register CMFS */
if (GOAL_RES_Offes)) {

res = goal_miCmfsReg (&pMiCmfs, 0);
}

/* register first region to CMFS */
if (GOAL_RES_Offes)) {

res = goal_miCmfsRegRegion (pMiCmfs, GOAL_ID_MI_NVS_REGION_CMFS1);
}

[* register second region to CMFS */
if (GOAL_RESOK(res)) {

res = goal_miCmfsRegRegion (pMiCmfs, GOAL_ID_MI_NVS_REGION_CMFS2);
}

return res;

In order to utilize CMFS, the following configuration option must be enabled.

GOAL_CONFIG_MEDIA_MI_CMFS:
0: CMFS is not utilizgdefault)
1: CMFS is utilized

This configuration option and the required files are added when the following feature is enabled in
the Makefile, when using the GOAL build system:

CONFIG_MAKE_FEAT_MEDIA_MI_CMFS 1

Version:0.1 132/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

7 GOAL extension modules (protos)

Different kinds of GOAL extension modules can be divided
1 libraries for communication profiles provided by port GmbH
9 more complex functiomlocks

7.1 Device Detection (DD)

The Device Detectiorepresents a public interface to read and write @&tiables by dter
external compoents or remotedeviceslt is projected only for development and initial
configuration purposes. During normal operation the Device Detection shall be dis@bked.
a2dz2NOS O2RS Aa f Adoapr@oRddAy GKS RANBOG2NER X

The Device Maager tool provides a graphical user interface to read and writev@hables by a
host computer using the Device Detectidrnis chapter describes a GOAL device used as
counterpart to the Device Manager tool.

The Device Detection works according to tlieducer/consumer model, i.e. a Di@quest of the
DDproducer is received by one or more f8Bnsumers and each Dé&dnsumer transmits a DD
response. Each Di2quest must be answered by one or more-Bd3ponses.

The data transfer between theD-producer and DE2onsumerss realized via a TCP/IP connection
using the UDP protocolll UDRJatagrans are transmitted as broadcast packets to be
independent on the IP configuration.
The data in the DPdatagramcontainsa DDpacket, which igoded according to the Device
Detection protocolThe Device Detection protocol allows:

9 to build groups of devices via a BDstomerID,

1 to assign DBequests and DBesponses to unique devicega the MAC addresand

1 to assign DBequests to DEresponses.

Each DEconsumer can be assigned to agp by a DEcustomerID. The DBpacket involves the
DD-customerID of the group, which shall receive the {pécket. The DiaustomerID allows a
filtering of the received Dipackets. The DibustomerID can be configured about the Giariable
DD_CM_VAR_CUSWERIDOn the local device the GiariableDD_CM_VAR_CUSTOMERID
be setby functiongoal ddCfgCustomerlD()

The DBcustomerID 0 disables the filtering of the received {p&ckets. ADD-consumerwith the
DD-customerID 0 accepts all Dpackets. A Dipacket with the DEcustomerID O is received from
allDDconsumers

A symbolic name can be assigned to each device usable for graphical user intéitfi@ce=note
device can sethe symbolic name by the CMariable DD_CM_VAR_MODULENAME. On the local
device the CMrariableDD_CM_VAR_MODULENAME can be set by function
goal_ddCfgModuleName().

Version:0.1 133169

INDUSTRIAL
COMMUNICATION

g.al MIDDLEWARE

GOAL initializes the Device Detection automatically in the state GOAL_FSA_INIT if the Device

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Detection is enabled by the compitdefine GOAL_DD.

7.1.1 Configuration

7.1.1.1 Compilerdefines

The following compiledefines are available to configure the Device Detection:

GOAL_DD:

0: Device Detection is disabled (default)
1: Device Detection is enabled

7.1.1.2 CMvariables

The following CMariables are available wonfigure the Device Detection:

CM-Module-ID DD_CM_MOD_ID

CMvariablelD 0

CMvariable name | DD_CM_VAR_MODULENAME

Description name of the local devicausable bytools for symbolic names

ThisCMvariable can be set by function goal_ddCfgModuleName().

CM data type

GOAL_CM_STRING

Sze 20 bytes

Default value from NVS or O

CMModule-ID DD_CM_MOD_ID

CMvariablelD 1

CMvariable name | DD_CM_VAR_CUSTOMERID
Description DD-customerID of the local device

This CMvariable can be set by function goal_ddCfgCustomerID().

CM data type

GOAL_CM_UINT32

Sze 4 bytes
Default value from NVS or O
7.1.2 Implementation guide

7.1.2.1 Configure the locatlevice

Version:0.1

134169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Thelocal device shall support tHeevice Detectiontherewith the Device Manager tool can set
and get CMvariables.

1. GOAL initializes the Device Detection automatically in the state GOAL_FSA_INIT if the Device
Detection is enabled by the compitdefine GOAL_DD.

2. Set the DBcustomerID to 1:
goal_ ddCfgCustomerID(1);

3. Set the device name:
uint8_t str[] = fAmyDevo,;
goal_ddCfgModuleName(str);

4. Now the Device Manager tool can read and write-OM NA I 6 f S& 2y GKS RSQJA

7.2 Command line interface@L)

GOAL provides a command line interface, which is used by GOAL core modules and other GOAL
extension modulesTheavailable commands for the command line interface are described in the
appropriate chaptersBut it is also possible to integrate a command line interfacehe own
application see chapted. The source codef the GOAL command line interfaiselocated in the

R A NB O goalNbtos\xXli.

The command line interface supports the awompletion of commands and provides a command
history. The size of the command history is configurable during compilation.

The data exchangaboutthe command line interface is realized
9 via a UART connection
For furthermedias please contagtort.

The command line interface provides an interfacedebugging see chaptei7.2.5

example:
X\goalapph00410 goalcli*

7.2.1 Configuration
The following compiledefines are available to configure the command line interface:
GOAL_CONFIG_CLI:
0: command line interface is disabled (default)

1: command line interface is enabled

GOAL_CONFIG_CLI_HISTORY:

Version:0.1 135169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

0: history of the command line interface is disabled (default)
1: history of the command line terface is enabled

GOAL_CONFIG_CLI_HISTORY_SIZE:
number of history entries

GOAL_CONFIG_CLI_UART:
0: command line interface is not connected via UART (default)
1: command linenterface is connected via UART

GOAL_CONFIG_CLI_DBG:
0: debug interface of theommand line interface is disabled (default)
1: debug interface of the command line interface is enabled

7.2.2 Platform API

7.2.2.1 UART connection

Prototype GOAL_STATUS T goal_tgtCharGet(char *pBuf)

Description This indication functiomeceives a single char from the UART connection.
Parameters pBuf | buffer for a single received chdtom UART

Return values | GOAL return status, see chap&B

Category mandatory for GOAL command line interface via UART

Condition none

Prototype GOAL_STATUS T goal_tgtCharPut(char c)

Description This indication functiotransmits a single char via the UART connection.
Parameters Cc | single char to send via UART

Return values | GOAL return status, see chap&B

Category mandatory for GOAL command line interface via UART

Condition none

7.2.3 Command structure

Each Cldommand is composed of:
 a maircommand,
1 one or more sulcommands,
1 anaction and
1 one or more optional parameters.

Version:0.1

136169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

7.2.3.1 Main-command

portNBO2YYSyYy R&a (2 deansnardlifoldpjilicatiossp@cifiydorinyands to separate
these commands from the existing camands in the GOAL system.

7.2.3.2 Subcommand

The subcommand is ay specific name.

7.2.3.3 Action

Tablel2 provides an overview about binding action names for standard actions. Not all actions
must be implemented by a specific command.

Action Description
add adding a value to a set ghlues, e.g. an entry to a table
help put out a help string for the maifsub-command
set set the value of a specified parameter
show put out the value of a specified parameter
rem removing a value from a set ofluas, e.g. remove an entry from a
table

Tablel2: command line standard actions

7.2.3.4 Parameters

7.2.3.4.1 Integer values

Integer values are currently only accepted with a base of 10 and may optionally contain a sign.
ExampleThe following command sets the port membership of port 1 to VLAN 1024

$ eth vlan port add 1 1024
7.2.3.4.2 Strings
{GNRAYy3Ia | NB aidl NdhaBaeterr YR SYRSR gAGK | & .
ExampleThe following command sets the value of config variable 00 2 @I £ dzS & SEI Y LJ

$cmset 0 1 fiexampl eod

7.2.3.4.3 Port numbers

Ports are entered as integer values starting with O up to max. port number + 1. Max. port number
+1 represents the management port. A 5 port switch provides poct8 Qexternal ports) and port
4 as management port.

Version:0.1 137/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

ExampleThe following commands set the default VLAN tag for port 1 to 1024 with prio 7:

$ eth vlan default set 1 1024 7

7.2.3.4.4 MAC addresses

MAC addresses are given in the formaxx:Xx:XX:XX:XX wherexx stands for a two char
hex number.
ExampleThe followng command adds port 3 to MAC address 00:11:22:33:44:55

$ eth mactab mac add 00:11:22:33:44:55 3

7.2.3.4.5 IP addresses

IP addresses are given in the formai.xxx.XXX.XXx wherexxx stands for a oneto three-
digit decimal number.
ExampleThe following command sets the IP address, netmask and gateway for the TCP/IP stack:

$ netip set 192.168.1.133 255.255.255.0 0.0.0.0

7.2.4 Creaing goplication-specific commands

The following steps are necessary to implement applicasipecific commands fahe command
line interface:
1. Create commandssee chaptei7.2.3
2. Implement the initialization of the applicatiespecific command line interface.
3. Implement commandhandlers for mainand subcommands.
4. Register command® the command line interfacby function goal_cliCmdRe@hd make
the command handlers of the own commands known.
5. Thecommandsare processetbop-controlled in the state GOAL _FSA OPERATIGN.
possible to return a respondgy function goal_cliPrintf().

Chapter7.2.6.1shows an example.

7.2.5 Command line interface for debugging

The following commands are available for the debug interface:

Command | dbg memb show <address> [count]

Description | Shows the byte memory value (8 bit) at the given address. If cogntes, up to
count values will be shown starting at the given address.

Parameter | <address> The memory address where the reading begins in hex
format (OXXXXXXXXX.
[count] Specifies the number of values to be read starting at th¢
given memoryaddress.

Version:0.1 138169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Command | dbg memw show <address> [count]

Description | Shows the word memory value (16 bit) at the given address. If count is given
to count values will be shown starting at the given address.

Parameter | <address> The memory address where the reading begins in hex
format (OXXXXXXXXX.
[count] Specifies the number of values to be read starting at thg
given memory address.

Command | dbg memd show <address> [count]

Description | Shows the double word memory value (32 bit) at the given address. If count |
given, up to count values will be shown starting at the given address.

Parameter | <address> The memory address where the reading begins in hex
format (OXXXXXXXXX.
[count] Specifies the number of values to be read starting at thg
given memory address.

7.2.6 Implementation guidelines

7.2.6.1 Create applicatiorspecific commands

This example assumes that the command line interface is implemented in an own C module, e.qg.
appl_cli.c.

1. Digital outputs shall be set via the command line interface. The given valuecsded. Each
bit relates to a specific DOUT channel. Thevahee of the bits in the value can be managed
by a bit mask. According to chapt@r2.3the command name is:

appl dout set <value> <mask>

2. Define the string variable in the source code:

const char strAppl [] = fapgmhmband?* /' * main
const char strApplD out[] = fAdout egommahd*s ub
const char str Appl Set[] = fiset 0; /' * action */

3. Implement the initialization function to register the commands and to make the handler
applCmdHandler(pr all commands known:

GOAL_STATUS_T applInitCli(void) {

GOAL_STATUS T res; /* GOAL return value */
GOAL_CLI_CMD_T *pApplCliHdI; /* handle to main - command */
GOAL_CLI_CMD_T *pApplICliSubHdI; /* handle to sub - commands */

Version:0.1 139169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

[* register main - command */
res = goal_cliCmdReg(strAppl, NULL, applCmdHandler, NULL,
pAppICliHdI);

[* register sub - command */
if (GOAL_RES_OK(res)) {
res = goal_cliCmdReg(strApplDout, NULL, NULL, pAppICliHdI,
&pApplCliSubHdl);
}

/* reqgister action */

if (GOAL_RES_OK(res)) {

res = goal_cliCmdReg(strApplSet, NULL, NULL, pAppICliSubHdI, NULL);
}

return res;

4. Implement the command handler applCmdHandler():

void applCmdHandler(
GOAL_CLI_DATA T *pData /*[in] complete received command */
)

{
GOAL_STATUS Tres; /* GOAL return value */

const char *pStr = NULL; [* string argument from the received
command */
unsigned int len = 0; /* length of the argument in byte(s) */
uint8_t cmdFound = 0; /* flag to check the existence
of the command * /

/* The main - command is already analyzed by the GOAL command line
interface and this command handler was called. */

/* eliminate sub - command from the received command */
res = goal_cliParamGet(pData, 1, &pStr, &len);
if (GOAL_RES_OK(res)) {
/* check sub - command */
if (strApplDout == pStr) {
[* eliminate action */
res = goal_cliParamGet(pData, 2, &pStr, &len);
if (GOAL_RES_OK(res)) {
/* check support of ac tion */
if (strApplSet == pStr) {
[* execute application - specific action */
applDoutSet();
cmdFound = 1;

}

}

/* print a response */

if ((GOAL_RES_OK(res)) && (1 ==cmdFound)) {
goal _cl i Printf (eRecutechmmad M ;

else {
goal _cl i Prunknawh (cédmmandn o) ;
}

return res;

Version:0.1 140/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

5. Implement the applicatiorspecific function applDoutSet() to handle tBD©UTs.

6. Registetthe initialization of theapplicationspecific command line interfac@he initialization
shall be executed in stage GOAL_STAGE_CLI in state GOAL_FSA_INIT_GOAL.

GOAL_STAGE_HANDLER_T stageAppICli;

goal_mainStageReg(GOAL_STAGE&SIajeApICli, GOAL_STAGE_INIT,
applinitCli);

7.3 Web-server
GOAL provides smart webserver for embedded systems. The wsdrver was designed:
9 for file downloadsand

1 to getinformation about the current device state and properties.

The webserver supports the followingroperties

transfer protocols: 1 HTTP
1T HTTPS
request methods: 1 GET
1 POST

One or more wekpages can be assigned to one instance of the-setver. Theweb-pagesare
part of the application and must be rda availableby the application The wekserver provides
callback function for this purposseecbHttpRegFunc() in chapt@c3.4

The current device state and propertiesncbe read from CMariables and applicatiespecific
variables. The applicatiespecific variables can be organized as simple variables or as a one
dimensional list.

It is possible to store templates for wadages with placeholders for current valuesapiplicatiornt
specificvariables.The text substitutios aredescribed in chapter.3.2 Web-templates make the
dynamicmanagement of welpages possible.

Theaccess tdahe web-servercan be limitedoy user levels. The application can specify, which user
levek shall be supported by the device and which rights the userdekelll haveThe

authentication data consistingf user name and the password for each user lewelconfigurable

by CMvariablesThe GOAL weberver provides up to 4 user levels.

The user levelsan be applied bwll instances of the weberver.For each instance of the web
server the valid user level can be specifikaling registrationWeb-requests are only transferred

to the application after a successful authentication, i.e. the callback funchbétitpRegFua() in
chapter7.3.4is only called after a successful logihe transfer of theiser name and the

password via a weberver instance using the HTT&nsfer protocol is unsafgort recommends
using the HTTPS transfer protocol.

Version:0.1 141/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

HTTP$ activated by the compiledtefine GOAL_CONFIG_HTTPS. HISEBShe external software
component mbedLSor encoding und authenticatiorhe access to mbedTLS is realized about
the media adapter for TL.See chapte6.4. TLSor HTTPS isitialized andopened by function
goal_httpsNew().

About the CMvariables for HTTPS it is possible to instalivate key and aown X509certificate
for. If no own certificate is stored, the wederver takes a default certificate provided jbgrt.

example:

1 X\goalapphgoal http01 get*:
for upload of a wekpage

1 X\goahapphgoal httd05 template criv*:
for upload of a wekiemplate with CMvariables and applicatieapecific variables

1 X\goalapphgoal httd06 template_list*:
for upload of a wekiemplate with lists

1 X\goahlapphgoal httd04 auth*:
for authentication about user levels

1 X\goahapphgoal http02_ post*:
for file download

7.3.1 Configuration

7.3.1.1 Compilerdefines
The following compiledefines are available to configure tinebserver
GOAL_CONFIGTTP
0: transfer protocol HTTP is not usétkfault)
1: transfer protocol HTTP is used
GOAL_CONFIG_HTTPS:

0: transfer protocol HTTPS is not used (default)
1: transfer protocol HTTPS is used

7.3.1.2 CMvariables

The following CMariables are available to configure theb-server.

CMModule-ID GOAL_IDHTTPD

CMvariablelD 0

CMvariable name | HTTPD_CM_VARTT® CHANNELS_MAX

Description maximal number of connectioravailable for the HTTP transfer protocol

CM data type GOAL_CMUIINT16

Version:0.1 142/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Size 2 bytes

Default value from NVS or O

CMModule-ID GOAL_ID_HTTPD

CMvariablelD 1

CMvariable name | HTTPD_CM_VARTTPS_CHANNELS_MAX

Description maximal number of connections available for the HT{f&&fer protocol
CM data type GOAL_CM_UINT16

Size 2 bytes

Default value from NVS or O

CMModule-ID GOAL_ID_HTTPD

CMvariablelD 2

CMvariable name | HTTPD_CM_VABSERLEVELO

Description authentication data foftevel O
CM data type GOAL_CM_STRING

Size 32 bytes

Default value from NVS or an empty string

CMModule-ID GOAL_ID_HTTPD

CMvariablelD 3

CMvariable name | HTTPD_CM_VABSERLEVEL1

Description authentication data for level 1
CM data type GOAL_CM_STRING

Size 32 bytes

Default value from NVS or an empty string

CMModule-ID GOAL_ID_HTTPD

CMvariablelD 4

CMvariable name | HTTPD_CM_VABSERLEVEL?2

Description authentication data for level 2
CM data type GOAL_CM_STRING

Size 32 bytes

Default value from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPD

CMvariablelD 5

CMvariable name | HTTPD_CM_VABSERLEVEL3

Version:0.1 143169

INDUSTRIAL
COMMUNICATION

g.a‘ MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

Description authentication data for level 3
CM data type GOAL_CM_STRING
Size 32 bytes

Default value

from NVS or aempty string

The following CMrariables allow to configure the TLS layer used by HTTPS:

CMModule-ID GOAL_ID_HTTPS

CMvariablelD 0

CMvariable name | HTTPS_CM_VAR_TLS SERVER_CERTIFICATE
Description certificateof the webserver

CM data type GOAL_CM_GENERIC

Size 1024 bytes

Default value

from NVS ocertificate fromport

CM-Module-ID GOAL_ID_HTTPS

CMvariablelD 1

CMvariable name | HTTPS_CM_VAR_TLS PRIVATE_KEY
Description private key of the wekserver

CM data type GOAL_CM_GENERIC

Size 1024 bytes

Default value

from NVS or an empty entry

CMModule-ID GOAL_ID_HTTPS

CMvariablelD 2

CMvariable name | HTTPS_CM_VAR_TLS _SRV_CERT_CA CN
Description common name of the server of the certification authority
CM data type GOAL_CM_STRING

Size 128 bytes

Default value

from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CMvariablelD 3

CMvariable name | HTTPS_CM_VAR_TLS SRV_CERT_CA O

Description name of the certification authority organization, e.g. tt@mpany name
CM data type GOAL_CM_STRING

Size 128 bytes

Default value

from NVS or an empty string

Version:0.1

144169

INDUSTRIAL
COMMUNICATION

g.a‘ MIDDLEWARE

PROFESSIONAL
INDUSTRIAL
COMMUNICATION

CM-Module-ID GOAL_ID_HTTPS

CMvariablelD 4

CMvariable name | HTTPS_CM_VAR_TLS _SRV_CERT_CA C

Description country, in which the certification authority organization is located
CM data type GOAL_CM_STRING

Size 8 bytes

Default value

from NVS or an empty string

CM-Module-ID GOA_ID_HTTPS

CMvariablelD 5

CMvariable name | HTTPS_CM_VAR_TLS_SRV_CERT_CN
Description common name of the welserver

CM data type GOAL_CM_STRING

Size 128 bytes

Default value

from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CMvariablelD 6

CMvariable name | HTTPS_CM_VAR_TLS SRV_CERT_O
Description name of the organizatioprovided the webserver
CM data type GOAL_CM_STRING

Size 128 bytes

Default value

from NVS or an empty string

CMModule-ID GOAL_ID_HTTPS

CMvariablelD 7

CMvariable name | HTTPS_CM_VAR_TLS_SRV_CERT_C

Description country, in which the organization provided the webrver is located
CM datatype GOAL_CM_STRING

Size 8 bytes

Default value

from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS

CMvariablelD 8

CMvariable name | HTTPS_CM_VAR_TLS_SRV_CERT_NOT_BEFORE
Description from what dae and time the certificate is valid

CM data type GOAL_CM_STRING

Size 20 bytes

Version:0.1

145169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

| Default value | from NVS or an empty string

CM-Module-ID GOAL_ID_HTTPS
CMvariablelD 9
CMvariable name | HTTPS_CM_VAR_TLS_SRV_CERT_NOT_AFTER

Description from what dat and time the certificate is invalid
CM data type GOAL_CM_STRING

Size 20 bytes

Default value from NVS or an empty string

7.3.2 Web-templates

The GOAL weberverallows to implement templates for wepages with placeholders for current
information. The placeholders are substituted by the current values by theseeker during the
upload processThe webserver provides placeholders for

1 CMvariables,

1 applicationspecific variables and

T lists.

7.3.2.1 CMvariables

The placeholder for CMariables contains the CishoduleID and the CMariableID. Tke web
server executes theubstitution of the placeholder by the Givariable automatically.
syntax:

[CM:<modNum>, <cmVarNum>]

example:
[CM:0, 2]

7.3.2.2 Application-specific variables

The placeholder for applicatiespecific variables contains the name of the variable in the
application. The welserver requires the current value of the variable from the application by
calling a callback function, see chapieB.4cpHttpTemplateFunc(), and substitutes the
placeholder in the wie-page.

syntax:
[VAR:<applVarName>]

example:

Version:0.1 146169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

[VAR:applVar]

7.3.2.3 Lists

The webserver provides apffective method to generate lisia HTML textTheHTML texfor a
single list entrycan be enclosed in thelaceholdes FOREACH and /FOREAGHe webtemplate.
FOREACH mark®ae-dimensionalist and the HTML text between th@aceholdes FOREACH and
/IFOREACH is execute for each list elemEmé place for the list entry is marked in the HTML text
by the placeholder VAR withe desired variabl@ame. After the substitution of the placeholder
VAR the wekserver changes to the next list entaytomatically i.e. it is not possible to substitute
the samélist entry twice. Therewith it is only necessary to describe the first list entry in the web
template.

The webserver onlygets the ID and th@ame of the list and the number of list elememisring
the registration The content of the list elements is managed by the application. Thesewker
callsa callback functiorio get the content of thenextlist element, see chaptef.3.4
cpHttpTemplateFunc().

Nesed lists are allowedThe maximal supported nesting depth is 4.

syntax:
[FOREACH:<listName>] € [/ FOREACH]

examplefor HTMUisting:

[FOREACH:mainList]
 main: [VAR: main Name]

sub - lists:

[FOREACH]
 sub: [VAR: sub Name]
[[FOREACH]

[[FOREACH]

ExampleX\goaklapphgoal_httd 06_template_list* generates a HTML listing. The indication in the
web-browser isshown inFigure23:

Version:0.1 147/169

INDUSTRIAL PROFESSIONAL
COMMUNICATION INDUSTRIAL
MIDDLEWARE COMMUNICATION

Figure23: web-page of example 06_template_list

¢ KS LJ I OSK2f REOREACEhcandalsd bk Bitegkateddn other HTML formatting like
tables.

7.3.3 Characters

square bracketslf the HTML text shall show square brackehe square brackets must be written
double, because placeholderswebtemplatesare bordered by square brackets.
example:An array instruction shall be shovam a webpage.

HTML text: applArray[[5]]

Web-browser view: applArray[5]

double quotes Double quotes in the HTMExt must be protected by a backsladlecause strings
in the C code are enclosed by double quotes.
exampe: uint8_twetr 3S w6 I df Ki YieHeaFEHG IX O KIKNBS BT

The rules for HTML text are valid &t other characters

7.3.4 Callback functions

Prototype GOAL_STATUS_TcbHttpReq Func(GOAL_HTTP_APPLCBDATA T
*applData)

Description | Thereceived and valid webequest is passed to the applicatiofhe application
has to process the wetequest and to produce a welgsponse.

Version:0.1 148169

