
CANopen Design Tool

User Manual

© port GmbH, Halle 2019/08/22; CANopen Design Tool Version 2.3.32

Disclaimer

All rights reserved

The programs, boards and documentations supplied by port GmbH are created with due
diligence, checked carefully and tested on several applications.

Nevertheless, port GmbH can not take over no guarantee and no assume del credere lia-
bility that the program, the hardware board and the documentation are error-free respec-
tive are suitable to serve the special purpose.

In particular performance characteristics and technical data given in this document may
not be constituted to be guaranteed product features in any leg al sense.

For consequential damages, which are emerged on the strength of use the program and
the hardware boards therefore, every legal responsibility or liability is excluded.

port has the right to modify the products described or their documentation at any time
without prior warning, as long as these changes are made for reasons of reliability or
technical improvement.

All rights of this documentation lie with port. The transfer of rights to third parties or
duplication of this document in any form, whole or in part, is subject to written approval
by port. Copies of this document may however be made exclusively for the use of the
user and his engineers. The user is thereby responsible that third parties do not obtain
access to these copies.

The soft- and hardware designations used are mostly registered and are subject to copy-
right.

CANopen®
is registered trademark, licensed by CiA - CAN in Automation e.V., Germany.

EtherCAT®
is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

We are thankful for hints of possible errors and may ask around for an information.

We will go all the way to verify such hints fastest

Copyright

© 2019 port GmbH
Regensburger Straße 7
D-06132 Halle
Tel. +49 345 - 777 55 0
Fax. +49 345 - 777 55 20
E-Mail service@port.de
Internet http://www.port.de

Table of Contents

1. Abbreviations . 7

2. References . 9

3. Introduction . 11

3.1. Product overview . 11

3.2. Product structure . 11

3.3. System requirements 13

3.4. Installation . 13

3.5. Support by port . 14

4. Device structure . 15

5. File structure . 17

5.1. DT project file . 17

5.2. Profile databases . 17

5.2.1. profile304_july_2010.pro 18

5.2.2. profile443_v2_1_0.pro 18

5.3. Generated files . 20

6. Graphical user interface 21

6.1. Menu . 21

6.1.1. File . 21

6.1.2. Edit . 21

6.1.3. Generate . 21

6.1.4. Show . 21

6.1.5. Options . 21

6.1.5.1. View Options . 21

6.1.5.2. Generation Options 22

6.1.5.3. Import Options 23

6.1.6. Help . 23

6.2. Toolbar . 23

6.3. Project tree . 24

6.3.1. General settings . 24

6.3.1.1. Objects . 25

6.3.1.2. C Code Generation 25

6.3.1.3. EDS/XDD Generation 25

6.3.1.4. Advanced Configuration 25

6.3.1.5. Non-standard Extensions 25

Version: 2.3.32 CANopen Design Tool Page 3 of 71

6.3.2. EDS/XDD Information 25

6.3.3. Hardware Configuration 25

6.3.4. Line . 26

6.3.4.1. Object Dictionary 26

6.3.4.1.1. Sub-segmentation 26

6.3.4.2. Standard Settings 28

6.3.4.3. Additional Settings 28

6.3.4.4. EDS/XDD Settings 28

7. Project editing . 29

7.1. Beginning a project 29

7.2. Hardware configuration 29

7.3. Application variables 30

7.4. Parameterization . 31

7.5. Generation of source code 31

7.6. %-Variables . 31

7.7. {}-Expressions . 32

8. Communication services 33

9. Special cases . 35

9.1. Range checking for variables 35

9.2. Grouping of indices in sub-segments 35

9.3. Predefined symbols 35

9.4. Limitations . 36

10. Complex data types 37

11. Object-specific callback functions 39

12. Manufacturer-specific object descriptions 41

12.1. Format descriptors 41

12.2. Example for html-documentation 44

12.3. Example for tcl-scripts 45

12.4. Example for rtf documents 45

12.5. Example for csv-files 46

13. CAN-Merge PlugIn 49

13.1. Project View . 49

13.2. Detail View . 50

14. Extension module: csv-import 51

14.1. Structure of the csv-file 51

14.2. Input parameters for the csv-import 52

Page 4 of 71 CANopen Design Tool Version: 2.3.32

14.2.1. Line . 52

14.2.2. Index offset . 52

14.2.3. csv-file . 53

14.2.4. Header in csv-file 53

14.2.5. csv-specifier line 53

14.3. csv-specifiers . 53

14.4. csv-separator . 64

14.5. Limitations . 65

15. Non-standard extensions 67

15.1. Application-specific cob-IDs 67

15.2. Application-specific handling of NMT messages 68

15.3. Complete profile-specific data type index range 68

15.4. Complex data types in EDS 68

Index . 70

Version: 2.3.32 CANopen Design Tool Page 5 of 71

Page 6 of 71 CANopen Design Tool Version: 2.3.32

1. Abbreviations

CAN Controller Area Network

CiA CAN in Automation international users and manufacturers group e.V.

COB Communication Object (CAN Message)

COB-ID Communication Object Identifier

CSDO Client SDO

csv comma separated value files

DT Design Tool

EDS Electronic Data Sheet

EMCY Emergency Object

ESC EtherCAT Slave Controller

ESI EtherCAT Slave Information

ETG EtherCAT Technology Group

GUI graphical user interface

MPDO Multiplex PDO

NMT Network Management

PDO Process Data Object

SDO Service Data Object

SSDO Server SDO

SYNC Sychronization Object

TIME Time Stamp Object

XDD XML device description

Version: 2.3.32 CANopen Design Tool Page 7 of 71

XML eXtensible Markup Language

Page 8 of 71 CANopen Design Tool Version: 2.3.32

2. References

/CiA-301/ CiA standard 301 "Communication profile", V4.2

/CiA-306-1/ CiA standard 306-1 "Electronic device description, EDS and DCF",
V1.3.5

/CiA-311/ CiA standard 311 "CANopen device description, XML", V1.1.0

/RFC 4180/ Network Working Group, Request for Comments: 4180
Y. Shafranovich, SolidMatrix Technologies Inc., October 2005

Version: 2.3.32 CANopen Design Tool Page 9 of 71

Page 10 of 71 CANopen Design Tool Version: 2.3.32

3. Introduction

3.1. Product overview

The CANopen Design Tool of port is a software tool for the development of CANopen
devices. It manages properties, hardware configurations and the object dictionary of the
CANopen device. In the result the CANopen Design Tool generates:

• C code for the configuration, optimization and initialization of the Library,

• the object dictionary as C code,

• electronic device descriptions and

• various documentations.

Design Tool project

description templates for
manufacturer-specific
object documentations

import:
hardware configurations
electronic device
 descriptions
CSV object documentation

C code for Library configuration
C code for Library initialization
C code for Object Dictionary
electronic device descriptions
HTML documentation
TXT docuentation

export:
hardware configurations

Design Tool

hardware configurations
profile databases
extensions

processes

Design Tool project

settings about the GUI

manufacturer-specific
object documentations

manufacturer-specific
databases

manufacturer-specific
databases

figure 1: Design Tool

With the CANopen Design Tool an instrument is available which frees the developer of
error-prone activities repeating itself. It ensures consistency of implemented functional-
ity, electronic device descriptions and device documentations.

The created object dictionary supports numerous options of the CANopen Library from
port. Such as several CAN-lines (multiple lines) and segment structuring. A tree repre-
sentation of all implemented parameters and data eases the maintenance of device soft-
ware. With the CANopen Design Tool the beginning with the CANopen protocol is less
difficult and the development of a device is accelerated.

Version: 2.3.32 CANopen Design Tool Page 11 of 71

The CANopen Design Tool is available in two variations:

• full edition and

• demo edition.

3.2. Product structure

functionality DT demo version DT full version

availability free licensed

maximal number of main-indices 15 all

maximal number of sub-indices 65 all

generation of Library configuration x x

generation of C-code x x

generation of EDS x x

generation of XDD x x

x xgeneration of documentation in html-format

x xgeneration of documentation in txt-format

x xgeneration of manufacturer-specific object

descriptions

profile database 301 x x

profile database 302 x x

profile database 304 — licensed

profile database 401 — licensed

profile database 402 — licensed

profile database 404 — licensed

profile database 405 — licensed

profile database 406 — licensed

profile database 410 — licensed

profile database 417 — licensed

profile database 418 — licensed

profile database 419 — licensed

profile database 443 — licensed

profile database 447 — licensed

profile database 452 — licensed

extension csv-import — licensed

extension CAN-merge — licensed

extension no global objects — licensed

Page 12 of 71 CANopen Design Tool Version: 2.3.32

table 1: product structure

The profile databases include the object specifications of the suitable CiA standard for
import. The scope of delivery of the CANopen Design Tool comprises:

• software of the CANopen Design Tool

• user manual

• profile databases

• extensions
The CANopen Design Tool is available on the web-site of port for download under

Products / CANopen / Tools / CANopen Design Tool.
All licensed parts of the CANopen Design Tool must be activated by a valid license
before usage.

3.3. System requirements

The CANopen Design Tool runs on PC’s with Microsoft Windows™ or Linux with:

RAM: 512 MByte
Hard-disk Space: 45 MByte

3.4. Installation

For installation do the following steps:

1. Unpack the archive in zip-format.

2. for Windows™: Execute the setup program setup.exe.

for Linux: Unpack the archive in tgz-format.

After installation you will find the directory structure shown in figure 2 with:

• profiles: contains all profile databases for import

• examples: contains sample files

• manual: contains the user manual

• help: only for private usage of the CANopen Design Tool

Version: 2.3.32 CANopen Design Tool Page 13 of 71

Design Tool

profiles

examples

help

<example 1>

<example n>

manual

figure 2: directory structure of the CANopen Design Tool

On Windows™ systems the CANopen Design Tool can be started by the icon on the
desktop or via the start menu.

On Linux systems the CANopen Design Tool can be started by calling the program
designtool.

3.5. Support by port

Please contact us for sales via

e-mail: service@port.de

phone: +49 345 777 55 - 0

fax: +49 345 777 55 - 20

Please contact us for technical support via

e-mail: support@port.de

The engineers at port will give you some assistance as soon as possible.

port provides consultations in the whole field of CAN e.g. network planning, network
configuration, message distribution, selection of devices and CANopen Profile implemen-
tations.

Page 14 of 71 CANopen Design Tool Version: 2.3.32

4. Device structure

Each DT project specifies a field device with 1 - 127 CANopen devices /CiA-301/. Each
CANopen device is connected with one CANopen network. That means each CANopen
device is assigned to another CAN line.
If the field device only supports 1 CANopen device, the field device is a single-line
device. In the other case the field device must be a multi-line device.

field device

CANopen device (node-ID)

communication

segment

1st logical device

manufacturer-specific

segment

...

device-profile

segment

.

.

.

.

...

8th logical device

manufacturer-specific

segment

device-profile

segment

CANopen device (node-ID)

communication

segment

1st logical device

manufacturer-specific

segment

device-profile

segment

.

.

.

.

8th logical device

manufacturer-specific

segment

device-profile

segment

manufacturer-specific

segment

manufacturer-specific

segment

figure 3: device structure

Each CANopen device can have 1-8 logical devices.

Version: 2.3.32 CANopen Design Tool Page 15 of 71

Page 16 of 71 CANopen Design Tool Version: 2.3.32

5. File structure

5.1. DT project file

All information of a DT project is stored in the DT project file. Nevertheless it is useful
to have a working directory for each DT project, because the generated files will be
stored in the working directory of the DT. The file extension for the CANopen Design
Tool is ".can".

5.2. Profile databases

Profile databases contain standardized objects with their attributes and allow implementa-
tions in shortest time. The CANopen Design Tool is delivered with profile databases for
communication objects according to /CiA-301/ and /CiA-302/ and for safety-related com-
munication according to /CiA-304/.

If communication objects are set up with the CANopen Design Tool, the objects will be
loaded automatically from the profile databases. Additionally various profile databases to
profile device standards are available at port, see table 1 and table 2.

Objects within segments in the project tree can be exported to own profile databases. The
objects from all profile databases can be imported. The generation with objects from pro-
file databases, created by port, fails without a valid license for the suitable profile data-
base.

profile database file reference to standard

version content

profile301.pro CiA-301, V4.2.0 communication profile

profile302.pro CiA-302, part 2-6,

V4.1.0

additional application layer

profile304.pro CiA-304, V1.0.1 safety-related communica-

tion

profile304_july_2010.pro EN 50325-5, July

2010

profile401.pro CiA-401, V2.1 generic I/O modules

profile402.pro IEC 61800-7,

December 2007

(CiA-402-2, V3.0.0)

drives and motion control

profile402_2_v4_1_0.pro CiA-402-2, V4.1.0

profile404.pro CiA-404, V1.2 measuring devices and

closed-loop controllers

Version: 2.3.32 CANopen Design Tool Page 17 of 71

profile database file reference to standard

version content

profile405.pro CiA-405, V1.0 IEC 61131-3 programmable

devices

profile406.pro CiA-406, V3.2 +

V3.1

encoder

profile410.pro CiA-410, V1.1 inclinometer

profile417-3.pro CiA-417-3, V2.0 lift

profile417-4.pro CiA-417-4, V2.0

profile418.pro CiA-418, V1.0.1 battery modules

profile419.pro CiA-419, V1.0.1 battery chargers

profile443_v2_1_0.pro CiA-443, V2.1.0 SIIS level-2 devices

profile447_v2_0_0.pro CiA-447, V2.0.0 car add-on devices

profile452_v1_0_0.pro CiA-452, V1.0.0 PLCopen motion control

table 2: overview about profile databases

The following sub-chapters give additional information to some profile database files.

5.2.1. profile304_july_2010.pro

The profile database for the CiA-304 provides the profile-specific objects for

• the SRDO service and

• the GFC service.

Some objects uses different default values dependig on the information direction. The
default values of these objects are set to invalid, most on value 0.

5.2.2. profile443_v2_1_0.pro

The profile database for the CiA-443 provides the profile-specific data types and objects
with except for object 6010h (p443_cpu_clock_time_and_date).

The profile-specific data types are dependent on the number of channels or valves which
can be different for various objects. The Design Tool generates special C structures for
the sub-indices which are depending on channels or valves to provide an effective access
on the objects in C code. All structure definitions are stored in the generated file
objects.h.

Example: data type 0082h (12-CHANNEL METAL LOSS)

The data type is compound by general and channel-dependent sub-indices.

The following C structure for the channel-dependent sub-indices is generated:

Page 18 of 71 CANopen Design Tool Version: 2.3.32

typedef struct {

UNSIGNED8 status; /**< channel status */

REAL32 averageMetalLoss; /**< channel average metal loss */

REAL32 averageTemperature; /**< channel average temperature */

REAL32 sector_1_metalLoss; /**< channel sector 1 metal loss */

REAL32 sector_1_temperature; /**< channel sector 1 temperature */

REAL32 sector_2_metalLoss; /**< channel sector 2 metal loss */

REAL32 sector_2_temperature; /**< channel sector 2 temperature */

REAL32 sector_3_metalLoss; /**< channel sector 3 metal loss */

REAL32 sector_3_temperature; /**< channel sector 3 temperature */

REAL32 sector_4_metalLoss; /**< channel sector 4 metal loss */

REAL32 sector_4_temperature; /**< channel sector 4 temperature */

REAL32 sector_5_metalLoss; /**< channel sector 5 metal loss */

REAL32 sector_5_temperature; /**< channel sector 5 temperature */

REAL32 sector_6_metalLoss; /**< channel sector 6 metal loss */

REAL32 sector_6_temperature; /**< channel sector 6 temperature */

REAL32 sector_7_metalLoss; /**< channel sector 7 metal loss */

REAL32 sector_7_temperature; /**< channel sector 7 temperature */

REAL32 sector_8_metalLoss; /**< channel sector 8 metal loss */

REAL32 sector_8_temperature; /**< channel sector 8 temperature */

} P443_CHANNEL_METAL_LOSS_T;

The C structure for data type 0082 with 2 channels is:

typedef struct {

UNSIGNED8 numOfEntries; /**< number of entries */

UNSIGNED32 siUnitMetalLoss; /**< SI unit for metal loss */

UNSIGNED32 siUnitTemperature; /**< SI unit for temperature */

P443_CHANNEL_METAL_LOSS_T chan[2]; /**< channels */

} P443_12_CHANNEL_METAL_LOSS_2_T;

The condition for the generation of channel-dependent data types is the setting of the pro-
file number in object 1000h (p301_device_type) or in object 67FFh (single_device_type)
for multiple logical devices.

The names of the C structure elements are fixed.

The C names of the P443 objects on tab Structure for the main-index hav e to be modified
by a repeated import without usage of sub-segmentation.

Limitations:

• object 6010h (p443_cpu_clock_time_and_date) is not supported because the DT
does not provide the data type TIME_OF_DAY

• the profile database P443 is not available for non-global variables

Please contact port if you need any of the limited functions, see chapter 3.5.

Version: 2.3.32 CANopen Design Tool Page 19 of 71

5.3. Generated files

An overview about the generated output files gives table 3.

file description

cal_conf.h configuration file for the Library in C code

objects.h Object dictionary implementation in C code

objects.c Object dictionary implementation in C code

(optional)

co_init.c initialization file for the Library in C code

<edsFileName>.eds EDS file for a CAN line

<edsFileName>.xdd XDD file for a CAN line in xml-format

<edsFileName>.txt description file for the CANopen Device Monitor

<projectName>_docu.txt documentation of implemented objects in txt-format

<projectName>.html documentation of the DT project in html-format

<manufacturer-specific> manufacturer-specific object descriptions (optional)

generate.err information file with error and warning messages

table 3: generated files

Page 20 of 71 CANopen Design Tool Version: 2.3.32

6. Graphical user interface

The CANopen Design Tool is controlled via

• menu,

• toolbar and

• project tree with masks on tabs.

Information in html-format are indicated in the standard browser.

6.1. Menu

6.1.1. File

The menu File controls the DT project files and terminates the DT.

6.1.2. Edit

The menu Edit allows to copy, cut, paste, delete and duplicate objects in the project tree.

6.1.3. Generate

The menu Generate provides the generation process of the output files depending on the
setting in the menu Generate > Generate Documentation and the settings in the menu
Options > Generation Options. The content of the output files can be specified about the
settings in the project tree, see chapter 6.3.

It is possible to execute application-specific programs before and after generation. The
commands can be entered about the menu Generate > Pre-Generation Command and
Generate > Post-Generation Command. The command can be a shell-script or a batch
file, or you can call an executable file, e.g. the EDS checker, make all. The output of the
command is written into the information file "generate.err".

6.1.4. Show

The menu Show allows to indicate all generated files.

6.1.5. Options

The menu Options provides configuration settings related to the DT itself.

Version: 2.3.32 CANopen Design Tool Page 21 of 71

6.1.5.1. View Options

EDS names in tree:
This option determines the indication of the object names.

on: The EDS names of the objects are indicated in the project tree.

off: The C names of the objects are indicated in the project tree.

Use mask view:
This option determines the active tab after selection of an object in the project tree.

on: Tab Mask is indicated first.

off: Tab Structure is indicated first.

Hide EDS flags on tab Structure:
This option controls the indication of the EDS settings:

• Default Value in EDS file

• Limits in EDS file

• Refuse read on scan

• Refuse write on download

• Valid after reset

on tab Structure when the sub-index of an object is selected in the project tree.

on: The settings are not indicated and can not be changed. But the configured val-
ues of the settings are used for generation.

off: The settings are indicated and can be changed.

Font settings:
The font of views can be configured.

Expert Mode:
Properties of objects in the Communication Segment of the project tree are restricted
to avoid settings which violates CiA standards. This constraint can be removed
about this option.
Modifications made in the Expert Mode are not reset if the Expert Mode is switched
off. It is possible to load the default settings for the object from the profile database
about tab Structure > button Default Values.

on: The Expert Mode is active. Object properties can be adapted to special applica-
tion requirements. ATTENTION! It is possible that the modified object proper-

ties violates standards and the CiA Conformance Test is not passed.

off: The Expert Mode is deactive.

6.1.5.2. Generation Options

Check objects:
This options allow to disable the checking of objects before generation.

on: The object dictionary is checked before generation. This setting is

Page 22 of 71 CANopen Design Tool Version: 2.3.32

recommended.

off: The object dictionary is NOT checked before generation. Errors in the object
dictionary can cause a crash of the DT. This setting shall only be used for large and
approved object dictionaries.

Generate objects.c:
This option determines the location of the generated object dictionary.

on: The object dictionary is stored in the file objects.c. Extern declarations are
stored in objects.h.

off: The object dictionary and the extern declarations are stored in objects.h.

Manufacturer-specific object description:
About this option the user can configure up to 3 description templates and the
desired documentation files. For more details see chapter 12.

6.1.5.3. Import Options

Delete HW Configurations for EDS-import:
This option configures the deletion of all hardware configurations in the object tree
during the EDS-import initiated about the menu File > Import EDS/XDD file.

on: All Hardware Configurations are deleted (by default).

off: No Hardware Configuration is deleted.

6.1.6. Help

The menu Help provides:

• context help to the selected view,

• DT user manual

• overview about available compiler defines,

• routine for installing license,

• actual version of the DT and

• information to the newest available DT version.

6.2. Toolbar

The toolbar below the menu provides a fast access to:

• control functions for DT project files

• editing functions for the project tree

• generation process

• addition of the communication services PDO and SDO

Version: 2.3.32 CANopen Design Tool Page 23 of 71

• query of the newest available DT version

figure 5: Toolbar

6.3. Project tree

The project tree represents all information to the field device. About button <F1> the
online help for each view is available.

figure 6: project tree

6.3.1. General settings

The general settings makes common configurations related to the field device.

Kind of device:
This setting implies the configuration of the Library which shall be used for this
field device related to the NMT capabilities.

Page 24 of 71 CANopen Design Tool Version: 2.3.32

6.3.1.1. Objects

The usage of object-specific callback functions is described in chapter 11.

6.3.1.2. C Code Generation

These options determine code-specific properties to allow the integration of the Library
into application code.

6.3.1.3. EDS/XDD Generation

These options allow the usage of optional information in the EDS/XDD file according to
/CiA-306-1/ and /CiA-311/.

6.3.1.4. Advanced Configuration

This mask allows to make device-specific definitions. These definitions have to be writ-
ten in C syntax and are taken over into the configuration file for the Library.

6.3.1.5. Non-standard Extensions

In some less cases it can be necessary to violate definitions in the CiA standards to realize
special application-specific requirements. This mask makes some exceptions available,
see chapter 15.

6.3.2. EDS/XDD Information

Information about the manufacturer and the device are necessary for the header of the
EDS and XDD file.

6.3.3. Hardware Configuration

The DT provides the possibility to configure more than one hardware configuration for
the field device. This can be useful when different hardware environments are used dur-
ing development, test and production for instance. But only one hardware configuration
can be active.

The hardware configuration is generated to the configuration file cal_conf.h and is used
by the CANopen driver.

It is configurable to generate the C code settings for all hardware configurations or only
for the active hardware configuration about the menu General Settings > C Code Genera-

tion > Generate only active hardware configuration. In the case that the C code settings
for all hardware configurations are generated only the settings for the active hardware
configuration is valid during compilation of the application code.

Version: 2.3.32 CANopen Design Tool Page 25 of 71

A field device can work in different CANopen networks at the same time. Such multi-
line devices can be gateways for instance. Each network line needs their own CAN con-
figuration while the CPU and compiler settings are valid for the complete field device.
For multi-line devices each Hardware Configuration has to include CAN settings for each
line. CAN Settings 0 refers to Line 0 etc.

6.3.4. Line

The Line item in the project tree represents a network and includes line-dependent set-
tings and the object dictionary of the device for the line.

6.3.4.1. Object Dictionary

The object dictionary specifies all needed objects and their properties and is grouped in
the following segments:

• Data Types: contains all data types in the index range 0001h - 0FFFh

• Communication Segment: contains all objects for communication services in the
index range 1000h - 1FFFh

• Manufacturer Segment: contains manufacturer-specific objects in the index range
2000h - 5FFFh

• Device Profile Segment: contains device profile objects in the index range 6000h -
9FFFh

• Dynamic Variables Segment: contains standard network variables in the index range
A000h - AFFFh

• Reserved Area: the index range B000h - FFFFh are reserved, system variables are
not supported

6.3.4.1.1. Sub-segmentation

Inside the Manufacturer Segment and the DeviceProfile Segment it is possible to create
virtual or real sub-segments.

Virtual sub-segments are used to structure the graphical user interface and for the cre-
ation of own sub-segment-specific profile data bases.

Real sub-segments are provide the access about named array variables additionally. This
access to variables in C code can be useful for devices with identical logical devices:

device[0].control = 0x1234;

device[1].control = 0x5678;

The indexing on the named array variables starts always with 0 in C code style. The data
type of the named array variables is a generated C structure representing all objects inside
the sub-segment:

Page 26 of 71 CANopen Design Tool Version: 2.3.32

typedef struct {

UNSIGNED16 control;

} CO_OD_LINE0_devSub_T;

CO_OD_LINE0_devSub_T device[2];

All sub-segments are specified by the following properties:

property description

Name logical name used in the object tree

Variable name of the sub-segment in C code
devSub in the example above

Start first object index inside the sub-segment

Length number of object indices inside the sub-segment

Constant descrip-
tion structure

The descriptions of all objects in the sub-segment are stored in
the program memory.

Virtual segment virtual sub-segments are only indicated in the object tree and are
excluded by C code generation

Add a sub-segment: A new sub-segment can be created about tab Mask > Add new Sub-

Segment after selection of the Manufacturer Segment or the DeviceProfile Segment.

Configure a sub-segment: An existing sub-segment can be configured about tab Mask >

Configure Sub-Segment after selection of the sub-segment.

Delete a sub-segment: An existing sub-segment can be removed about menu Edit >

Delete after selection of the sub-segment.
ATTENTION! - All objects inside the sub-segment are also deleted!

The usage of sub-segments bases on the following rules:

1.rule:
A sub-segment must be located completely inside the Manufacturer Segment or the
DeviceProfile Segment.

2.rule:
The index range of a sub-segment must not overlaps the index range of an other sub-
segment.

3.rule:
The Variable name of sub-segments inside the Manufacturer Segment must not be
used for sub-segments in the DeviceProfile Segment and vice versa.

4.rule:
All sub-segments with the same Variable name must be real or virtual and have to
include the same objects shifted by an index offset.

5.rule:
All sub-segments with the same Variable name must be constant or non-constant.

Version: 2.3.32 CANopen Design Tool Page 27 of 71

An example is in the DT installation directory > examples > sub_segmentation.

6.3.4.2. Standard Settings

Some object properties can be changed about Standard Settings / Global Settings for

Object <tab> for all objects of the line. The configuration about the Standard Settings

has the higher priority against the object-specific setting, i.e. any change of these standard
settings overwrites the object-specific setting for all objects. Object-specific settings can
only be made if the change is allowed by activation of Standard Settings / <property> /

Local Changeable. The object-specific settings are located on tab Optimization for main-
indices and on tab Structure for sub-indices.

Kind of Node specifies if the line shall have NMT master or NMT slave capabilities.

6.3.4.3. Additional Settings

These settings provide the configuration of line-dependent special functions of the
Library and/or extra packages to the Library.

6.3.4.4. EDS/XDD Settings

This item includes line-dependent information for the EDS and XDD file.

Page 28 of 71 CANopen Design Tool Version: 2.3.32

7. Project editing

This chapter describes the working flow for creating and editing projects. The order of
the flow is not mandatory, but very useful. Basic parameter like the number of CAN lines
and the kind of the device (Slave or Master) shall be clear at the beginning of the devel-
opment. The necessary steps are the following:

• configuration of global parameter

• configuration of global ESI resp. EDS parameter

• configuration of the hardware settings

• configuration of CAN line specific EDS parameter

• configuration of standard and additional settings

• definition of application variables

• parameterization of application variables

• definition of communication variables

• parameterization of communication variables

• optimization of each object if needed

• generation of outputs

7.1. Beginning a project

A project is created by the menu File > New Project.
Existing projects are opened by the button Open Project or the menu File.
Each CAN line can be preset with data from a profile or an EDS file.

7.2. Hardware configuration

At first the target hardware has to be configured. The most important decision is to
choose a CPU resp. an operating system.
Default configurations for the supported platforms can be found at the s1-example of the
CANopen Library. These configuration files (conf_xxxx.h) can be imported via
"Import Configuration".

Version: 2.3.32 CANopen Design Tool Page 29 of 71

Figure 7, hardware configuration part of the project tree

If the CPU is set, the other CPU settings are set to CPU-specific default values. These
default values are suitable in the majority of cases. At Compiler Settings the used com-
piler can be selected. For each line the CAN-controller or the PC-CAN-Interface must be
configured. This can be done at CAN Settings. There the CAN controller family must be
chosen at first and then the particular CAN controller type can be set. Detailed informa-
tion about each attribute at these form can be found at the context help.

If the application shall be used on different hardware plattforms, more than one hardware
configuration can be created. If no configuration is marked as active, the define CON-

FIG_USE_TARGET_x must be set to 1 in the Makefile or in the compiler project.

7.3. Application variables

Definition of application variables is the creation of objects with indices in the range of
2000h − 5FFFh for manufacturer-specific objects or in the range of 6000h − 9FFFh for
standardized device-profile objects. There are two ways for the definition:

• loading from a profile database and

• creation by hand

Certain objects can be selected by means of their index from a profile database. Data-
bases for the standardized CANopen device profiles are available from port. If a database
does not yet exist, please contact port (see chapter 3.5). All non-standardized objects and
not provided objects by a database can be created by hand.
The main-index defines the structure and properties for all sub-indices of the object.

Page 30 of 71 CANopen Design Tool Version: 2.3.32

Figure 8, import mask for profiles

7.4. Parameterization

For parameterization of complex communication variables
the mask view can be used.

7.5. Generation of source code

About the button Generate all files listed in chapter 5.3 are generated.

This method garantees that all C code and documentation files are consistent to each
other.

The file generate.err contains warnings and errors. It is recommended to check this file
after each generation.

7.6. %-Variables

%-variables can be used in EDS Names and C Names of objects. In the file objects.c, in
the EDS files, in the documentation and also in the object tree the %-variables are
replaced by their current values.

Version: 2.3.32 CANopen Design Tool Page 31 of 71

%-variable description

%i number of the index

%s number of the sub-index

%l number of the line

%f number of the service (SSDO, CSDO, RPDO, RPDO-Mapping,

TPDO-Mapping, SRDO, SRDO-Mapping) starting at 1

%a number of the service starting at 0

%p (index - start of segment) starting at 0

%q (index - start of segment + 1) starting at 1

%u (index - start of sub segment) starting at 0

%v (index - start of sub segment + 1) starting at 1

%t short name of data type

%k number of sub-segment within a segment starting at 1

Table 5, %-variables

For numerical object settings the %-variable written in lower case is replaced by the deci-
mal value, otherwise the %-variable is replaced by the hexadecimal value without leading
"0x". %-Variables that are undefined in the current context return an empty string, e.g.
%s at an main-index.

Examples for the usage of these %-variables can be found at the SDO or PDO objects in
the communication profile.

7.7. {}-Expressions

{}-expressions allow the usage of %-variables and mathematical operators in EDS Names
and C Names of objects. Inside of the braces %-variables, constants (decimal/hexadeci-
mal) and the operators + - * and / can be used.
Examples for valid object names with {}-expressions:

• output {%i - 0x100}

• state {%p + 100} at device %l

Page 32 of 71 CANopen Design Tool Version: 2.3.32

8. Communication services

The CANopen protocol specifies various communication services. The most communica-
tion services are optional. The CANopen Library can be optimized, so that only the code
for the required CANopen services is implemented.

Communication services shall be implemented about the project tree by Line / Object
Dictionary / Communication Segment / tab Mask / Add Communication Service.

figure 9: dialog "Add new communication service"

The dialog allows to configure the selected communication service among other things
the implementation of optional communication objects. During creation of the communi-
cation service the CANopen Design Tool makes all necessary settings and loads all nec-
essary communication objects from the profile database of the newest available version.

Communication objects can be also added:

• by loading from profile databases about the project tree by
Line / Object Dictionary / Communication Segment / tab Mask / Import Data from
File or
Line / Object Dictionary / Communication Segment / tab Mask / Add new Index,

Version: 2.3.32 CANopen Design Tool Page 33 of 71

• by import from csv-file (see chapter 14) or

• by import from EDS/XDD file.

Please note that the CANopen Design Tool only creates the objects in these cases and
does not create the communication service, i.e. if the communication service was not cre-
ated before it is possible that compiler defines for the CANopen Library are not set cor-
rectly.

Objects according to older standard versions can be loaded from the profile databases
suitable to the desired standard version. If there is no suitable profile database available,
please contact port (see chapter 3.5).

Page 34 of 71 CANopen Design Tool Version: 2.3.32

9. Special cases

This chapter describes some special cases for object dictionary generation. The
CANopen Design Tool supports the generation of object dictionary implementations for
the ’single’-line release and the ’multiple’-line release of the CANopen library of port.
The following special cases are used for the optimization of the implementation.

9.1. Range checking for variables

Entries are set up as a default during generation of the object dictionary for minimum and
maximum values. These limit values are used of the CANopen library by port during
SDO transfer for limit supervision. The limit monitoring can be switched on/off via
object 1200h / tab Mask / checkbox "Check Object Limits with SDO Transfer". This set-
ting activates or deactivates the compiler define CONFIG_LIMITS_CHECK.

9.2. Grouping of indices in sub-segments

A further characteristic is the organization of device variables within structures. Such an
organization is possible for the manufacturer data and for data of the standardized device
profiles. This is convenient if identical entries in the individual sub-segments are stored.
If the data of two sub-segments should be filled in a structure, the sub-segments should
share the same variable name and the same length.

Useful steps for this are:

• Creation of the sub-segment (Add new Sub Segment)

• Filling with objects

• Duplication of the sub-segment (Duplicate)

Result of this grouping is a structure and a C-array of the type of this structure. The array
has as many elements as group members (sub-segments with same variable name) are
available. The advantage of such an organization is that the indexed addressing of the C-
arrays can be used. E.g. with multi axis drives for fast access with pointer switching in
firmware between the individual axes.

The same principle is pursued for manufacturer data. However, it is possible to select a
starting index for the segment and to declare the segment size freely. That means that the
data is stored normally up to the user defined index. From this index on the tree becomes
segmented in the manufacturer specific area.

9.3. Predefined symbols

Predefined preproccesor symbols like __DATE__, __TIME__, __FILE__ etc. can be
used within strings, but you have to put quotes around.

Version: 2.3.32 CANopen Design Tool Page 35 of 71

9.4. Limitations

The optimization configured at the optimization tab of an index can only be used outside
of sub-segments. The reason for this is, that sub-segments are stored in C-structures and
it is not possible to assign a storage class to a single member of a structure.

Page 36 of 71 CANopen Design Tool Version: 2.3.32

10. Complex data types

The standard /CiA_301/ allows the definition of manufacturer-specific complex data
types within the index range 0040h-005Fh and device profile specific standard and com-
plex data types within the index range 0060h-025Fh. The DT only supports the device
profile specific complex data types with the object code DEFSTRUCT.

Before objects of such data types can be specified, the data type must be created in the
DT. Data types are considered line-dependent, i.e. in order to specify objects of complex
data types the complex data type must be available on the same line.
The following steps are necessary to create a new data type:

1. select Line > Object Dictionary > Data Types in the project tree

2. press Add new Data Type on tab Mask

→ the input dialog Add new Index is opened

3. enter the desired index into the dialog Add new Index in hexadecimal format without
special identifier, example: 0040, and press <Enter>
→ an entry for the new data type is in the project tree, see Line > Object Dictionary

> Data Types > <new index>

4. specify the new data type about button Add new Sub-Index, tab Structure and tab
Optimization

If the data type is created, objects of the data type can be defined, when the objects have
the Object Code RECORD.

It is recommended to use the same name for C Name and EDS Name for the data type.

During the generation process the DT generates a struct definition for the data type and
stores the struct definition in objects.h. In multi-line projects identical data type defini-
tions on various lines are summed up to one struct definition.

Version: 2.3.32 CANopen Design Tool Page 37 of 71

Page 38 of 71 CANopen Design Tool Version: 2.3.32

11. Object-specific callback functions

Object-specific callback functions allow to execute application-specific operations during
reading and/or writing of objects via SDO, PDO and/or MPDO.

figure 10: dialog for General Settings / Objects

The usage of the object-specific callback functions requires the following steps:

• Use CANopen Library V4.5 and higher and configure the CANopen Library version
about General Settings / Kind of CANopen Library / Source code library V4.5x.
This makes the object-specific callback functions available.

• The object-specific callback functions can be activated or deactivated about General

Settings / Objects / Enable object-specific callback functions.

• If object-specific callback functions are activated generally, it is possible to switch
on/off the object-specific callback functions service related according to the follow-
ing criteria, see figure 10:

• access to the object via SDO, PDO and/or MPDO,
• read and/or write access to the object and
• before and/or after changing the value of the object in the object dictionary.

• The extern declaration for the object-specific callback functions can be located in
the generated or application software. This can be configured about General

Version: 2.3.32 CANopen Design Tool Page 39 of 71

Settings / Objects / Generate extern declaration for all object-specific functions.

• For each object one object-specific callback function can be specified about object
Main-Index / tab Structure / C Callback, see figure 11. This function is called for all
accesses to the object configured in General Settings / Objects. The name of the
object-specific callback function is application-specific. But the function prototype
for the object-specific callback function is fixed as follow:

RET_T <callback_name> (UNSIGNED16 index, UNSIGNED8 sub,

CO_OBJ_CB_TYPE_T reason CO_COMMA_LINE_DECL);

It is allowed to specify the same object-specific callback function for different
objects.

figure 11: dialog for object Main-Index / tab Structure / C Callback

Each setting in the DT is described in the online help about <F1>. The flow of calling of
the object-specific callback functions is documented in the user manual of the CANopen
Library.

Page 40 of 71 CANopen Design Tool Version: 2.3.32

12. Manufacturer-specific object descriptions

The DT provides format descriptors for the generation of manufacturer-specific object
descriptions in ASCII-format for different document types.

The description template is a text in ASCII-Format including format descriptors for
object-specific information and is stored in a file. During the generation of all files the
description template is applied to the specified objects. In the result an object description
for the specified objects from the specified lines is created and stored in the object
description file.

Depending on the format of the object description file it can be necessary to add a file
header and/or an end-of-file with special format settings to get a complete object descrip-
tion file. The description header is a text in ASCII-Format which is loaded at the begin-
ning of the object description file. The description end is a text in ASCII-Format which is
loaded at the end of the object description file.

The DT is able to generate up to 3 different manufacturer-specific object descriptions dur-
ing generation process. The line, the object range and the files with the descriptions and
the location of the object descriptions are configurable about the menu Options > Gener-

ation Options > Manufacturer-specific object descriptions, see figure 12.

figure 12: dialog Options > Generation Options > Manufacturer-specific object descrip-

tions

Version: 2.3.32 CANopen Design Tool Page 41 of 71

12.1. Format descriptors

The DT supports the following format descriptors:

format

descriptor

description

%a access type of the sub-index: RO, WO, RW, RWW, RWR, CONST

%B object code of the main-index in hexadecimal format without prefix

(example: 07)

%C name of the C callback function

%c nonvolatile storage: 0 - object is not stored nonvolatile, 1 - object is

stored nonvolatile

%D refuses write on download for the sub-index: 0 - not valid, 1 - valid

%d data type of the sub-index according to CiA-309-3 (example: u32)

%e EDS name of the main-index

%F default value in EDS valid for the sub-index: 0 - not valid, 1 - valid

%G C name of the data type of the main-index as string (example:

DATATYPE_T)

%g size in bytes of the sub-index in decimal format (example: 12)

%H data type number of the main-index in hexadecimal format without

prefix (example: 004A)

%h data type number of the sub-index in hexadecimal format without pre-

fix (example: 004A)

%I main-index in hexadecimal format without prefix (example: 1A00)

%i main-index in decimal format (example: 4096)

%L line number in hexadecimal format without prefix (example: A)

%l line number in decimal format (example: 12)

%M limits in EDS valid for the sub-index: 0 - not valid, 1 - valid

%m lower (minimum) limit of the sub-index

• for numerical objects: in hexadecimal format with prefix "0x"

(example: 0xFFFFFFFF)

• for string objects: <empty string>

%N EDS/C name of the sub-index as string, for objects of object code

RECORD it is in C syntax (example: myRecordElement)

%n name of the main-index in C code

%p PDO mapping allowed for the sub-index: 0 - not valid, 1 - valid

%O refuses Read on scan for the sub-index: 0 - not valid, 1 - valid

Page 42 of 71 CANopen Design Tool Version: 2.3.32

format

descriptor

description

%R valid after reset for the sub-index: 0 - not valid, 1 - valid

%S sub-index in hexadecimal format without prefix (example: A)

%s sub-index in decimal format (example: 12)

%T description of the object

Take note that the Design Tool can not convert special characters

because it does not know the desired document type.

%U upper limit of the sub-index

• for numerical objects: in hexadecimal format with prefix "0x"

(example: 0xFFFFFFFF)

• for string objects: <empty string>

%u unit of the sub-index (example: 100 ms)

%V default value of the sub-index

• for numerical objects: in hexadecimal format with prefix "0x" and

with the keyword "$NODEID" for SDO-, EMCY- and PDO-cobIDs

(example: 0xFFFFFFFF or $NODEID+0x200)

• for string objects: without quotation tags

(example: Test string)

%v default value of the sub-index

• for numerical objects: in decimal format with the keyword

"$NODEID" for SDO-, EMCY- and PDO-cobIDs

(example: 1614872592 or $NODEID+512)

• for string objects: without quotation tags

(example: Test string)

%W default value of the sub-index

• for numerical objects: in hexadecimal format with prefix "0x" with-

out the keyword "$NODEID" for SDO-, EMCY- and PDO-cobIDs

(example: 0xFFFFFFFF)

• for string objects: without quotation tags

(example: Test string)

%w default value of the sub-index

• for numerical objects: in decimal format without the keyword

"$NODEID" for SDO-, EMCY- and PDO-cobIDs

(example: 1614872592)

• for string objects: without quotation tags

(example: Test string)

Version: 2.3.32 CANopen Design Tool Page 43 of 71

format

descriptor

description

%z enumeration counter of the object in decimal format, counting starts

with 0 (example: 12, i.e. it is the 12th object)

table 6: format descriptors

12.2. Example for html-documentation

Each specified object in the object dictionary is listed with index, sub-index in bold text
style and the object description. The following example only refers to object 1000h and
1001h.

description template:
<p>

 object %Ih/%S : %T
</p>

description header:
<h1> Object dictionary </h1>

description end:
<hr>

object description:
<h1> Object dictionary </h1>
<p>
 object 1000h/0 : The device type specifies the kind of device. The lower
16 bit contain the device profile number and the upper 16 bit an additional informa-
tion.
</p>
<p> object 1001h/0 : The error register is a field of 8 bits, each for a cer-
tain error type. If an error occurs the bit has to be set: Bit 0 generic error, Bit 1
current, Bit 2 voltage, Bit 3 temperature, Bit 4 communication error (overrun,
error state), Bit 5 device profile specific, Bit 6 reserved, Bit 7 manufacturer spe-
cific
</p>
<hr>

indication in the web-browser:

Object dictionary

object 1000h/0: The device type specifies the kind of device. The lower 16 bit con-
tain the device profile number and the upper 16 bit an additional information.

object 1001h/0: The error register is a field of 8 bits, each for a certain error type. If
an error occurs the bit has to be set: Bit 0 generic error, Bit 1 current, Bit 2 volt-
age, Bit 3 temperature, Bit 4 communication error (overrun, error state), Bit 5
device profile specific, Bit 6 reserved, Bit 7 manufacturer specific

Page 44 of 71 CANopen Design Tool Version: 2.3.32

12.3. Example for tcl-scripts

A list of all specified objects is created. The entry for each object starts with a comment
including the enumeration counter. The enumeration counter is also used as list index for
the list objTab. The index, sub-index and the default value are listed for each object. The
following example only refers to object 1000h and 1001h.

description template:

#object %z
set objNum %z
set objTab($objNum,indexHex) 0x%I
set objTab($objNum,subHex) %S
set objTab($objNum,defValHex) "%V"

description header:
###
list of objects

description end:
<does not exist>

object description:
###
list of objects

#object 0
set objNum 0
set objTab($objNum,indexHex) 0x1000
set objTab($objNum,subHex) 0
set objTab($objNum,defValHex) "0x00000000"
#object 1
set objNum 1
set objTab($objNum,indexHex) 0x1001
set objTab($objNum,subHex) 0
set objTab($objNum,defValHex) "0x00"

The generated object list can be used after sourcing in a tcl-scripts - especially in the
frame for testing in the Console of the CANopen Device Monitor.

12.4. Example for rtf documents

Each specified object in the object dictionary is listed with index, sub-index and the
name. The following example only refers to object 1000h and 1001h.

description template:
\par
{\b Index:} 0x%I \par

Version: 2.3.32 CANopen Design Tool Page 45 of 71

{\b Sub-index:} %s \par
{\b Name:} %e \par
\par

description header:
{\rtf1\ansi\deff0

description end:
}

object description:
{\rtf1\ansi\deff0
\par
{\b Index:} 0x1000 \par
{\b Sub-index:} 0 \par
{\b Name:} Device Type \par
\par
\par
{\b Index:} 0x1001 \par
{\b Sub-index:} 0 \par
{\b Name:} Error Register \par
\par
}

after the import into a WORD document:

Object index: 0x1000
Sub-index: 0
Name: Device Type

Object index: 0x1001
Sub-index: 0
Name: Error Register

12.5. Example for csv-files

The generation of manufacturer-specific object descriptions can be used for csv-export.

csv-specifier line (see chapter 14.2.5):

index;sub;mObjCode;mDtIndex;sDtIndex;size;acc;min;max;val;

description template:

0x%I;%s;0x%B;0x%H;0x%h;%g;%a;%m;%U;%V;

description header:
<does not exist>

description end:
<does not exist>

Page 46 of 71 CANopen Design Tool Version: 2.3.32

object description:

0x2000;0;0x07;0x0006;0x0006;2;RO;0x0000;0xFFFF;0x1234;

0x3000;0;0x07;0x0007;0x0007;4;RW;0x00000000;0xFFFFFFFF;0x12345678;

Version: 2.3.32 CANopen Design Tool Page 47 of 71

Page 48 of 71 CANopen Design Tool Version: 2.3.32

13. CAN-Merge PlugIn

CAN-Merge provides functions to visualize and modify differences between different
CANopen Design Tool projects. The CAN-Merge extension module is an optional Plug-
In which is activated by the license file of the CANopen Design Tool. If a valid license is
present, CAN-Merge can be started by the CAN-Merge menu in the menu bar of the
CANopen Design Tool.

Figure 13, CAN-Merge main window displaying 2 projects

13.1. Project View

The project view shows different settings, sub segments, objects and sub indices with dif-
ferent colors. By using the Merge function in the tool bar these elements can be copied
from one project into the other one.

Via the menu File the modified projects can be saved to disk or imported into the
CANopen Design Tool. The menu entries like Save resp. Open refer to the active project
tree. Via Generate Diff Report an overview about the differences between the projects
can be generated. This diff report is an XML file containing all differences.

Version: 2.3.32 CANopen Design Tool Page 49 of 71

Via Options several settings can be configured. These include the attributes to be com-
pared or merged and further options.

13.2. Detail View

Figure 14, CAN-Merge diff window displaying differences of 2 sub indices

The detail view displays differences of global settings, indices and sub indices.
Attributes of indices and sub indices can be modified directly within this view. Modifica-
tions have to be confirmed by the button SAVE in the tool bar. A plausibility check is per-
formed when saving these settings.

Page 50 of 71 CANopen Design Tool Version: 2.3.32

14. Extension module: csv-import

The DT provides the import of object specifications in the csv-format for:

• manufacturer-specific complex data types (index range: 0040h - 005Fh)

• profile-specific complex data types (index range: 0080h - 025Fh)

• objects for communication, manufacturer-specific, device profile and dynamic vari-
ables (index range: 1000h - BFFFh)

• object-specific options for the generation of the EDS/XDD file

• object-specific options for the code generation

All data from the csv-file are imported into the specified line of the actual DT project.

The specification of an object refers to:

• main-index, i.e. these specifications are valid for all sub-indices of the object, and

• sub-index, i.e. these specifications are only valid for the specific sub-index of the
object.

The differentiation between main-index and sub-index is relevant for objects of object
code ARRAY or RECORD especially.

figure 15: dialog CSV object import

If the object already exist in the DT project it is completely substituted by the imported
object specification, i.e. the object is deleted with all sub-indices and then the new object
is imported. Sub-index 0 must be imported before higher sub-indices.

Errors during csv-import are reported about the GUI.

Numerical values in hexadecimal format has to be written with the prefix "0x" in C Syn-
tax, example: 0x123A.

Version: 2.3.32 CANopen Design Tool Page 51 of 71

14.1. Structure of the csv-file

The csv-import has taken the recommendations from /RFC 4180/ in consideration and
expects csv-files with the following structure:

line number in csv-file content of the csv-data line

1 • header with a comment OR

• header with the csv-specifier line OR

• csv-data

2 - n csv-data

table 8: structure of csv-file

Empty lines between the csv-data are allowed. Empty lines means lines without any char
or lines containing only the csv-separators in the correct number. These lines are ignored
during the csv-import. Additional comment lines are not supported because they are not
recommended by /RFC 4180/.

Each csv-data line has to contain the specification of one object identified by the main-
index and sub-index. This specification is a list of object properties, which can be
arranged application-specific. The specification is defined by the csv-specifier line. The
csv-specifier line includes special keywords for each object property separated by the
csv-separator sign. All csv-data lines has to use the same csv-specifier line.

The csv-specifier line can be enter about the GUI or can be loaded from the 1st line of the
csv-file.

14.2. Input parameters for the csv-import

The following input parameters can be specified in the dialog CSV object import about
the menu CSV > Object import.

14.2.1. Line

description: The csv-import works line-related, i.e. the csv-data are only imported

into one line. This parameter specifies the number of the desired line.

value range: 0 - 99

condition: The line numbering must be consecutively.

description: The csv-import works line-related, i.e. the csv-data are only imported
into one line. This parameter specifies the number of the desired line.

value range: 0

Page 52 of 71 CANopen Design Tool Version: 2.3.32

14.2.2. Index offset

description: The csv-data can be imported into different index ranges within a line.

This parameter specifies an offset for shifting the main-index from the

csv-data to the object in the DT project according to: obj_main_index

= csv_main_index + index_offset

value range: 0x0000 - 0xBFFF

14.2.3. csv-file

description: The directory and the name of the csv-file can be specified by this

input parameter.

14.2.4. Header in csv-file

description: This setting determines the interpretation of the 1st line in the csv-file.

value range: • absent: The csv-file does not contain a header in the 1st line. csv-

data start in the 1st line.

• present, used as csv-specifier line: The 1st line in the csv-file defines

the csv-specifier line.

• present, ignored as csv-specifier line: The 1st line in the csv-file con-

tains any comment. This line is ignored during csv-import.

14.2.5. csv-specifier line

description: The csv-specifier line specifies the meaning of the csv-data by special

csv-specifier keywords. The csv-specifiers are described in chapter

14.3 and have to be separated by the csv-separator sign.

14.3. csv-specifiers

The csv-import supports the following csv-specifiers:

csv-specifier name category description

index description: This csv-specifier defines the numeri-

cal number of the main-index.

category: mandatory

Version: 2.3.32 CANopen Design Tool Page 53 of 71

csv-specifier name category description

value range: 0x0040 - 0xBFFF

sub description: This csv-specifier defines the numeri-

cal number of the sub-index.

category: mandatory

value range: 0 - 255

mObjCode description: This csv-specifier defines the numeri-

cal value of the object code according

to /CiA-301/.

category: mandatory

related to: main-index

value range: 0x06 for DEFSTRUCT

0x07 for VAR

0x08 for ARRAY

0x09 for RECORD

GUI reference: object main-index > tab Structure >

Object Code

mDtIndex description: This csv-specifier defines the numeri-

cal value of the data type according to

/CiA-301/.

category: mandatory

related to: main-index

value range: 0x0001 - 0x025F

GUI reference: object main-index > tab Structure >

Data Type

Page 54 of 71 CANopen Design Tool Version: 2.3.32

csv-specifier name category description

mCName description: This csv-specifier defines the name of

the complex data type or of the vari-

able in the generated C code. If no

name is specified the name is gener-

ated by the Design Tool as follow:

1. The EDS name (mEdsName) is

used if it is specified with adjustments

to C syntax.

2. If no name is specified the Design

Tool builds own names:

• for data types:

DATATYPE_<index>_T, example:

DATATYPE_0040_T

• for variables: obj_<index>, exam-

ple: obj_2000

category: optional

related to: main-index

GUI reference: object main-index > tab Structure >

C Name

mEdsName description: This csv-specifier defines the name of

the object for the documentation in

the EDS/XDD file. If no name is

specified the Design Tool uses the C

name, see csv-specifier mCName.

category: optional

related to: main-index

GUI reference: object main-index > tab Structure >

EDS Name

mCb description: This csv-specifier defines the name of

the C callback function.

category: optional

related to: main-index

Version: 2.3.32 CANopen Design Tool Page 55 of 71

csv-specifier name category description

condition: During csv-import object-specific

callback functions are enabled if the

csv-specifier cb is used, i.e. the

checkbutton "Enable object-specific

callback functions" in General Set-

tings / Objects is set. But all other

configurations in General Settings /

Objects have to be done manually.

GUI reference: object main-index > tab Structure >

C Callback

desc description: This csv-specifier defines the docu-

mentation of the object.

category: optional

related to: main-index

GUI reference: object main-index > tab Structure >

Description

sCName description: This csv-specifier defines the name of

the sub-index used in the generated C

code for the element of complex data

types and in the EDS/XDD files. If

no name is specified the name is gen-

erated by the Design Tool as follow:

1. for object code VAR: The C name

of the main-index is used, see

mCName.

2. for object Code ARRAY or

RECORD: The name is generated:

sub_<sub>, example: sub_012. <sub>

is a decimal number with 3 digits.

category: optional

related to: sub-index

GUI reference: object sub-index > tab Structure >

EDS Name

sDtIndex description: This csv-specifier defines the numeri-

cal value of the data type of the sub-

index according to /CiA-301/.

Page 56 of 71 CANopen Design Tool Version: 2.3.32

csv-specifier name category description

category: mandatory

related to: sub-index

value range: 0x0001 - 0x001B

GUI reference: object sub-index > tab Structure >

Data Type

size description: This csv-specifier defines the size of

the sub-index. This csv-specifier is

relevant for extended data types, e.g.

VISIBLE_STRINGs.

category: optional

related to: sub-index

default value: • basic data types: size of the data

type

• VISIBLE_STRING: 125 bytes

• OCTET_STRING: 125 bytes

• DOMAIN: 1 byte

GUI reference: object sub-index > tab Structure >

Size

unit description: This csv-specifier defines the unit of

the object.

category: optional

related to: sub-index

value range: <any string>

default value: <empty>

GUI reference: object sub-index > tab Structure >

Unit

acc description: This csv-specifier defines the access

right of the sub-index.

category: optional

related to: sub-index

value range: RO, RW, WO, CONST, RWR, RWW

default value: RO

GUI reference: object sub-index > tab Structure >

Access

Version: 2.3.32 CANopen Design Tool Page 57 of 71

csv-specifier name category description

max description: This csv-specifier defines the upper

limit of numerical objects.

category: optional

related to: sub-index

value range: range of the numerical data type

default value: maximum of the data type

GUI reference: object sub-index > tab Structure >

Upper Limit

min description: This csv-specifier defines the lower

limit of numerical objects.

category: optional

related to: sub-index

value range: range of the numerical data type

default value: minimum of the data type

GUI reference: object sub-index > tab Structure >

Lower Limit

val description: This csv-specifier defines the value of

the object.

category: optional

related to: sub-index

default value: 0

GUI reference: object sub-index > tab Structure >

Default Value

defVal description: This csv-specifier defines the default

value. The Design Tool set the object

on this value after pressing the button

"Default Values".

category: optional

related to: sub-index

default value: 0

GUI reference: object sub-index > tab Structure >

button Default Values

mapPdo description: This csv-specifier defines the permis-

sion to map the object into a PDO.

category: optional

Page 58 of 71 CANopen Design Tool Version: 2.3.32

csv-specifier name category description

related to: sub-index

value range: 0 - PDO mapping is not allowed

1 - PDO mapping is possible

default value: 0

GUI reference: object sub-index > tab Structure >

PDO Mapping

nvStorage description: This csv-specifier allows the usage of

the mechanism for nonvolatile storage

of the CANopen Library V4.5 and

higher.

category: optional

related to: sub-index

value range: 0 - nonvolatile storage not supported

by Library

1 - nonvolatile storage supported by

Library

default value: 0

GUI reference: object sub-index > tab Structure >

Nonvolatile Storage

objFlagRefuseRd description: This csv-specifier defines the objFlag

/ Read (bit 1), see /CiA-306-1/ and

/CiA-311/. This flag allows the read-

ing on upload or not.

category: optional

related to: sub-index

value range: 0 - read on upload is allowed

1 - read on upload is not allowed

default value: 0

GUI reference: object sub-index > tab Structure >

Refuse read on scan

objFlagRefuseWr description: This csv-specifier defines the objFlag

/ Write (bit 0), see /CiA-306-1/ and

/CiA-311/. This flag allows the writ-

ing on download or not.

category: optional

Version: 2.3.32 CANopen Design Tool Page 59 of 71

csv-specifier name category description

related to: sub-index

value range: 0 - write on download is allowed

1 - write on download is not allowed

default value: 0

GUI reference: object sub-index > tab Structure >

Refuse write on download

objFlagValidAfterReset description: This csv-specifier defines the objFlag

/ after reset (bit 2), see /CiA-311/.

This flag determines when changed

values are be activated.

category: optional

related to: sub-index

value range: 0 - change values are valid immedi-

ately

1 - change values are valid after reset

default value: 0

GUI reference: object sub-index > tab Structure >

Valid after reset

edsDefault description: This csv-specifier defines if the

default values shall be documented in

the EDS and XDD files.

category: optional

related to: sub-index

value range: 0 - EDS/XDD without default value

1 - EDS/XDD with default value

default value: 0

GUI reference: object sub-index > tab Structure >

Default Value in EDS file

edsLimit description: This csv-specifier defines if the limit

values shall be documented in the

EDS and XDD files.

category: optional

related to: sub-index

value range: 0 - EDS/XDD without limits

1 - EDS/XDD with limits

Page 60 of 71 CANopen Design Tool Version: 2.3.32

csv-specifier name category description

default value: 0

GUI reference: object sub-index > tab Structure >

Limits in EDS file

optConstDefault description: This csv-specifier defines which

memory area shall be used to store

the default value of the object in C

code.

category: optional

related to: main-index

value range: 0 - default value is stored in RAM

1 - default value is stored in program

memory

default value: 1

GUI reference: object main-index > tab Optimization

> Constant default value

optConstDesc description: This csv-specifier defines which

memory area shall be used to store

the description of the object in C

code, see /Library manual/.

category: optional

related to: main-index

value range: 0 - object description is stored in

RAM

1 - object description is stored in pro-

gram memory

default value: 1

condition: The option must be local changeable,

see GUI Line / Standard Settings / tab

Mask / Global Settings for Object

Optimization / Constant value

description structure.

GUI reference: object main-index > tab Optimization

> Constant description structure

optConstLimits description: This csv-specifier defines which

memory area shall be used to store

the limits of the object in C code.

Version: 2.3.32 CANopen Design Tool Page 61 of 71

csv-specifier name category description

category: optional

related to: main-index

value range: 0 - object limits is stored in RAM

1 - object limits is stored in program

memory

default value: 1

GUI reference: object main-index > tab Optimization

> Constant limits

optCreateExternal description: This csv-specifier defines if an exter-

nal declaration shall be generated.

category: optional

related to: main-index

value range: 0 - extern declaration is not generated

1 - extern declaration is generated

default value: 1

GUI reference: object main-index > tab Optimization

> Create extern declaration

optCreateTypeDef description: This csv-specifier defines if the C

struct for an complex data type shall

be generated in C code.

category: optional

related to: main-index

value range: for complex data types:

0 - data type struct is not generated

1 - data type struct is generated

for variables: 0

default value: for complex data types: 1

for variables: 0

GUI reference: object main-index > tab Optimization

> Create type definition

optCreateVariable description: This csv-specifier defines if the vari-

able shall be generated in C code.

category: optional

related to: main-index

value range: for complex data types: 0

Page 62 of 71 CANopen Design Tool Version: 2.3.32

csv-specifier name category description

for variables:

0 - variable is not generated

1 - variable is generated

default value: for complex data types: 0

for variables: 1

condition: The option must be local changeable,

see GUI Line > Standard Settings >

tab Mask > Global Settings for

Object Optimization > Create vari-

able.

GUI reference: object main-index > tab Optimization

> Create Variable

optMemorySpecifier description: This csv-specifier defines a compiler

specific memory specifier keyword,

e.g. xdata.

category: optional

related to: main-index

value range: <compiler-specific string>

default value: <empty string>

condition: The setting must be local changeable,

see GUI Line > Standard Settings >

tab Mask > Global Settings for

Object Optimization > Storage class.

GUI reference: object main-index > tab Optimization

> Storage class

optVirtualObject description: This csv-specifier defines if the object

shall be interpreted as virtual or nor-

mal object.

category: optional

related to: main-index

value range: 0 - normal object

1 - virtual object

default value: 0

Version: 2.3.32 CANopen Design Tool Page 63 of 71

csv-specifier name category description

condition: The option must be local changeable,

see GUI Line > Standard Settings >

tab Mask > Global Settings for

Object Optimization > Virtual object.

GUI reference: object main-index > tab Optimization

> Virtual object

table 9: csv-specifier

Mandatory csv-specifiers must be included in the csv-specifier line. Optional csv-speci-
fier may be included in the csv-specifier line. If optional csv-specifiers are not used in the
csv-specifier line the DT uses the default value for these object properties.

Settings related to the main-index are taken from sub-index 0. Changed object properties
related to the main-index in sub-index 1..n are ignored.

Example: The entry for mDtIndex of the objects 3003h/1 and 3003h/2 is ignored. The
data type related to the main-index is imported from object 3003h/0.

index;sub;mEdsName;mObjCode;mDtIndex;sCName;sDtIndex;acc;min;max;val;

0x3003;0;ARR_I16;0x08;0x0003;Highest Sub;0x0003;CONST;0x02;0x02;0x02;

0x3003;1;ARR_I16;0x08;0x0005;sub1;0x0003;RW;0x8000;0x7FFF;0x1234;

0x3003;2;ARR_I16;0x08;0x0005;sub2;0x0003;RW;0x8000;0x7FFF;0x5678;

The format of values is determined by the data type of the sub-index (sDtIndex). The
specified values for max, min, val and/or defVal have to match this format.

index;sub;mCName;mObjCode;mDtIndex;sCName;sDtIndex;size;acc;min;max;val;

correct:

0x3001;0;arr_r32_2;0x08;0x0008;num;0x0008;4;CONST;2.0;2.0;2.0;

wrong:

0x3001;0;arr_r32_2;0x08;0x0008;num;0x0005;4;CONST;2.0;2.0;2.0;

Objects which shall be mapped into PDOs must be imported with the csv-specifier map-
Pdo. The generation process reports an PDO mapping error without this setting.

14.4. csv-separator

The csv-separator can be the comma, colon, semicolon or tabulator sign and is taken from
the csv-specifier line according to the following rules:

1. If the lines in the csv-file are closed with comma, semicolon, colon or tabulator this
sign is taken as csv-separator.

2. Otherwise the first occurrence of comma, colon, semicolon or tabulator is taken as
separator.

Page 64 of 71 CANopen Design Tool Version: 2.3.32

The possible csv-separator signs are handled in the listed order.

14.5. Limitations

The extension csv-import in the DT has some limitations. The limitations result from the
condition, that csv-files contains object properties and each line of the csv-file contains
the same information. Therewith the following settings can not be imported by csv-files:

• general settings

• general EDS/XDD settings with except of derived value from object 1000h
(p301_device_type)

• hardware configurations

• manufacturer-specific advanced configurations

• standard settings

• additional settings

The only exception is the dynamic PDO mapping. Depending on the access right of sub-
index 0 of the PDO mapping parameter the CANopen Design Tool determines if static or
dynamic PDO mapping is required.
For static PDO mapping the Granularity is always set to 0 bit and the option "Enable
dynamic PDO Mapping" is deactivated.
For dynamic PDO mapping the Granularity is always set to 8 bit and the option "Enable
dynamic PDO Mapping" is activated.

During csv-import only the format of the imported csv-data is checked. The content and
dependencies are checked during generation, i.e. wrong imported csv-data can cause
errors during generation. The imported csv-data are not checked against profile data-
bases, so it is possible that settings break standards. The csv-file shall be generated care-
fully.

By usage of sub-segments it is necessary to change the C names of objects which are
imported with an index offset in the same sub-segment.

Version: 2.3.32 CANopen Design Tool Page 65 of 71

Page 66 of 71 CANopen Design Tool Version: 2.3.32

15. Non-standard extensions

The non-standard extensions are configurable in the project tree about General Settings /

Non-standard Extensions, see figure 16.

figure 16: dialog Non-standard Extensions

Object properties can be changed in a non-standard manner about the Expert Mode, see
chapter 6.1.5.1.

15.1. Application-specific cob-IDs

The generation of the cob-IDs according to the Pre-defined Connection Set in /CiA-301/
is switched off about the project tree General Settings / Non-standard Extensions / Use

application-specific cob-IDs.

After the activation of this setting the DT generates the documentation of the cob-IDs in
the EDS and the manufacturer-specific object descriptions without the keyword
"NODEID". In the C module co_init.c the DT provides the function

RET_T overwritePreDefConnSet (CO_GLOBVARS_PARA_DECL)

to set the cob-IDs on the default values configured in the DT without any modification,

Version: 2.3.32 CANopen Design Tool Page 67 of 71

i.e. the Design Tool does not change valid bits in the cob-IDs. The call of this function
has to be added in the application after the execution of the function init_Library() and in
nmtslave.c/resetCommInd().

The following Cob-IDs are controlled via this option:

• SYNC: object 1005h/0 (p301_cob_id_sync)

• TIME: object 1012h/0 (p301_cob_id_time)

• EMCY: object 1014h/0 (p301_cob_id_emcy)

• SDO: objects 1201h/1+2 - 12FFh/1+2 (p301_n.._ssdo_par)

• RPDO: objects 1400h/1 - 15FFh/1 (p301_n.._rpdo_para)

• TPDO: objects 1800h/1 - 19FFh/1 (p301_n.._tpdo_para)

• SRDO: objects 1301h/1+5+6 - 1340h/1+5+6 (p304_n.._srdo_para)

ATTENTION: The user is responsible to avoid cob-ID conflicts. The EDS checker

of the CiA reports the violation of the Pre-defined Connection Set. The CiA Confor-

mance Test is not passed.

15.2. Application-specific handling of NMT messages

In some less cases it is necessary to disable NMT states and to ignore NMT messages.
After activation of General Settings / Non-standard Extensions / Activate application-

specific NMT message handling in the project tree the Library passes the handling of the
NMT massages on to the application.

15.3. Complete profile-specific data type index range

The activation of the setting General Settings / Non-standard Extensions / Enable all pro-

file-specific data type indices enables the complete index range from 0040h to 025Fh for
manufacturer-specific complex data types.

15.4. Complex data types in EDS

In some use cases the description of complex data types in the EDS file is insufficient.
The index of the complex data type is documented in the EDS file after activation of Gen-

eral Settings / Non-standard Extensions / EDS: Generate data type entry for RECORDS

in the project tree. The DT adds a DataType entry into the section of the main-index:

[1018]

SubNumber=5

ParameterName=Identity Object

ObjectType=0x09

DataType=0x0023

The setting EDS: Generate data type entry for RECORDS is applied on the main-indices
1000h - *h.

Page 68 of 71 CANopen Design Tool Version: 2.3.32

ATTENTION: The EDS checker of the CiA reports the violation of the /CiA-306-1/.

The CiA Conformance Test is not passed.

During EDS-import the DT accepts such non-standard DataType entries independently
from this setting. The index of the complex data type is loaded into the object properties.
But the Design Tool does not generate the data type itself, i.e. the data type has to be
already exist in the segment Data Types.

The DT indicates the imported complex data type in the object properties about the object
Main-Index / tab Structure / Data Type if the data type is already defined in the DT
project. If there is no suitable data type definition the indication about the object Main-

Index / tab Structure / Data Type remains empty and the generation process fails.

It is not possible to handle the definition of complex data types itself about the EDS file
because the index range of data types are not supported by EDS. Such an extension
means a large violation of the /CiA-306-1/. For the import of complex data types itself
the DT provides the csv-import.

Version: 2.3.32 CANopen Design Tool Page 69 of 71

Index

- -

__DATE__ 35
__FILE__ 35
__TIME__ 35

- C -

CAN line 15
CANopen device 15
CO_OBJ_CB_TYPE_T 40
csv-export 46
csv-import

comments 52
empty lines 52
hardware configurations 65
main-index properties 64
mandatory csv-specifier 64
optional csv-specifier 64
PDO mapping 64
settings 65
sub-segmentation 65
value format 64

- D -

data type, complex 68
data type

complex 37
creation 37
DEFSTRUCT 37
device profile-specific 37
manufacturer-specific 37

DEFSTRUCT 37
description template 41
device

CANopen 15
field 15

- E -

EDS, hide options 22
EDS-import, delete Hardware

Configurations 23
expert mode 22

- F -

field device 15
font settings 22

- G -

generation
post command 21
pre command 21

- K -

kind of
device 24
node 28

- L -

line 15
list.conf 41
local changeable 28

- M -

main-index 51
multi-line 15, 26

- N -

NMT messages 68
NODEID 67

Page 70 of 71 CANopen Design Tool Version: 2.3.32

- O -

object description 41
objects.c 23
optimization, sub-segmentation 36

- P -

post command 21
pre command 21
pre-defined connection set 67
profile304_july_2010.pro 18
profile443_v2_1_0.pro 18

- S -

single-line 15
sub-index 51
sub-segment

add 27
configure 27
delete 27
properties 26
real 26
rules 27
virtual 26

sub-segmentation, optimization 36

- T -

type
complex, data 37
creation, data 37
DEFSTRUCT, data 37
device profile-specific, data 37
manufacturer-specific, data 37

Version: 2.3.32 CANopen Design Tool Page 71 of 71

	1. Abbreviations
	2. References
	3. Introduction
	3.1. Product overview
	3.2. Product structure
	3.3. System requirements
	3.4. Installation
	3.5. Support by port

	4. Device structure
	5. File structure
	5.1. DT project file
	5.2. Profile databases
	5.2.1. profile304_july_2010.pro
	5.2.2. profile443_v2_1_0.pro

	5.3. Generated files

	6. Graphical user interface
	6.1. Menu
	6.1.1. File
	6.1.2. Edit
	6.1.3. Generate
	6.1.4. Show
	6.1.5. Options
	6.1.5.1. View Options
	6.1.5.2. Generation Options
	6.1.5.3. Import Options

	6.1.6. Help

	6.2. Toolbar
	6.3. Project tree
	6.3.1. General settings
	6.3.1.1. Objects
	6.3.1.2. C Code Generation
	6.3.1.3. EDS/XDD Generation
	6.3.1.4. Advanced Configuration
	6.3.1.5. Non-standard Extensions

	6.3.2. EDS/XDD Information
	6.3.3. Hardware Configuration
	6.3.4. Line
	6.3.4.1. Object Dictionary
	6.3.4.2. Standard Settings
	6.3.4.3. Additional Settings
	6.3.4.4. EDS/XDD Settings

	7. Project editing
	7.1. Beginning a project
	7.2. Hardware configuration
	7.3. Application variables
	7.4. Parameterization
	7.5. Generation of source code
	7.6. %-Variables
	7.7. {}-Expressions

	8. Communication services
	9. Special cases
	9.1. Range checking for variables
	9.2. Grouping of indices in sub-segments
	9.3. Predefined symbols
	9.4. Limitations

	10. Complex data types
	11. Object-specific callback functions
	12. Manufacturer-specific object descriptions
	12.1. Format descriptors
	12.2. Example for html-documentation
	12.3. Example for tcl-scripts
	12.4. Example for rtf documents
	12.5. Example for csv-files

	13. CAN-Merge PlugIn
	13.1. Project View
	13.2. Detail View

	14. Extension module: csv-import
	14.1. Structure of the csv-file
	14.2. Input parameters for the csv-import
	14.2.1. Line
	14.2.2. Index offset
	14.2.3. csv-file
	14.2.4. Header in csv-file
	14.2.5. csv-specifier line

	14.3. csv-specifiers
	14.4. csv-separator
	14.5. Limitations

	15. Non-standard extensions
	15.1. Application-specific cob-IDs
	15.2. Application-specific handling of NMT messages
	15.3. Complete profile-specific data type index range
	15.4. Complex data types in EDS

	Index

