
CANopen Device Monitor
User Manual

© port GmbH, Halle 11.01.2013; CANopen Device Monitor Version 3.2.7

Disclaimer
All rights reserved

The programs, boards and documentations supplied byport GmbH are created with due
diligence, checked carefully and tested on several applications.

Nevertheless,port GmbH can not take over no guarantee and no assume del credere lia-
bility that the program, the hardware board and the documentation are error-free respec-
tive are suitable to serve the special purpose.

In particular performance characteristics and technical data given in this document may
not be constituted to be guaranteed product features in any leg al sense.

For consequential damages, which are emerged on the strength of use the program and
the hardware boards therefore, every legal responsibility or liability is excluded.

port has the right to modify the products described or their documentation at any time
without prior warning, as long as these changes are made for reasons of reliability or
technical improvement.

All rights of this documentation lie withport. The transfer of rights to third parties or
duplication of this document in any form, whole or in part, is subject to written approval
by port. Copies of this document may however be made exclusively for the use of the
user and his engineers.The user is thereby responsible that third parties do not obtain
access to these copies.

The soft- and hardware designations used are mostly registered and are subject to copy-
right.

CANopen®
is registered trademark, licensed by CiA - CAN in Automation e.V., Germany.

EtherCAT®
is registered trademark and patented technology, licensed by Beckhoff Automation
GmbH, Germany.

We are thankful for hints of possible errors and may ask around for an information.

We will go all the way to verify such hints fastest

Copyright

© 2013port GmbH
Regensburger Straße 7
D-06132 Halle
Tel. +49 345 - 777 55 0
Fax. +49 345 - 777 55 20
E-Mail service@port.de
Internet http://www.port.de

Page 2 of 125 CANopen Device Monitor Version: 3.2.7

9.1. GeneralSettings. .28

9.2. DCFSettings .29

9.3. Network Settings . 29

9.4. ColorSettings. .30

9.5. Font Settings .30

10. NMTTab .31

10.1. NMTcommands. 31

10.2. Userdefined scripts . 31

10.3. Network overview . 32

10.4. Device Information. 32

11. DescriptionTab .33

11.1. ObjectDescription . 33

11.2. ObjectDescription File. 33

12. Overview Tab .35

12.1. Index Overview . 35

13. PDOConfiguration Tab. 36

13.1. Configurationof PDOs for the chart. 36

14. ProcessTab .39

15. PDOProcess Tab. .40

16. UsingStripcharts. .41

17. Extendedobject configuration. 43

17.1. Slider .43

17.2. Sliderin a Top Level Window . 44

17.3. SwitchBox Display of Objects . 45

18. Usageof Octet strings . 46

18.1. Value entry frame . 46

18.2. Octetstrings in scripts . 47

Page 4 of 125 CANopen Device Monitor Version: 3.2.7

19. UserSpecified Tabs. .48

19.1. Userspecified tabs with support of test. 48

19.2. Userspecified tabs without contents. 52

19.3. ErasingUser Specified Tab-sets. 53

20. DataManagement with DCF File. 54

20.1. Creatinga DCF file . 54

20.2. Load. .55

20.3. Send. .55

21. Offline Mode .56

22. ObjectData Management with OCF File. 57

22.1. Saving of OCF files . 57

22.2. Loading .57

22.3. FileFormat .57

23. Console .58

23.1. TclCommands. .58

23.2. Scripts. .59

24. Scriptingwith PDOs . 60

24.1. Configurationof PDOs in scripts . 60

24.2. Transmission of PDOs. 61

24.3. Requestof PDOs using RTR . 61

24.4. Receptionof PDOs . 61

24.5. Waiting for PDOs . 61

25. CANMessage Logging. 63

25.1. Scripting-Interface . 64

26. SDOProgram Download. 66

27. Network overview window . 68

28. ProjectFiles .69

Version: 3.2.7 CANopen Device Monitor Page 5 of 125

28.1. Import/Exportof CCM project files . 69

29. SRDOTab .70

30. LSSTab .72

30.1. LSSMask .72

30.2. LSSCommands . 73

31. DSP402 extension. .75

31.1. Statemachine tab . 75

31.2. Profilevelocity mode tab . 76

31.3. Profileposition mode tab. 76

31.4. Objectextensions . 77

32. About& Release Info Dialog. 79

32.1. AboutDialog .79

32.2. LatestRelease Info Dialog . 79

33. CDMCommand syntax. 80

33.1. SDOcommands . 80

33.2. PDOcommands . 84

33.3. NMTcommands. 90

33.4. LSScommands . 92

33.5. OtherCANopen commands. 93

33.6. Test commands. .99

33.7. CDMcommands. .103

33.8. DSP402commands (DSP402-Extension).110

34. Appendices .116

34. Appendix1 — CANopen Commands in Overview.116

34. Appendix2 — CDM Commands in Overview.118

34. Appendix3 — Creation of an Object Description.119

Page 6 of 125 CANopen Device Monitor Version: 3.2.7

34. Literature .120

35. Glossary. .121

Version: 3.2.7 CANopen Device Monitor Page 7 of 125

1. Introduction

1.1. Product Overview

The CANopen Device Monitor (CDM) communicates with CANopen devices in CAN
networks by using of various CANopen services.Therewith the Device Monitor sup-
ports:

• dev elopment,

• diagnostic,

• implementation and configuration

of CANopen devices.

The Device Monitor is a graphical user interface. Various drivers can be integrated in the
Device Monitor in dependency of the used CAN interface. Thedriver interface is called
m4d-server or CANopen server. The communication between the graphical user inter-
face and the driver is done by the TCP/IP protocol independent of the location of the
Device Monitor and the CANopen server. The user interface and the driver can be at the
same computer or on different computers, connected by a LAN, typically an Ethernet
TCP/IP connection.

Figure 1: Structure of the CANopen Device Monitor

The CANopen Device Monitor is available in two variations:

• full edition and

Version: 3.2.7 CANopen Device Monitor Page 7 of 125

• Starter Kit edition.

The StarterKit edition has the following limitations:

• no console for work with scripts,

• unconfigurable SYNC cycle,

• fixed bit rate (125 kBit/s),

• no device configuration by DCF file,

• support of only some fixed node IDs

The CANopen Device Monitor has the capability to execute scripts in full edition.A
script can contain variables and control structures just like in every modern structured
language. Completemaster applications can be developed using the languageTcl/Tk
〈http://www.tcl.tk 〉.
The Device Monitor has the following requirements to the system it is running on:

Operating System: Windows™, Vista™
UNIX (LINUX)

RAM: 512MByte
Hard Disk: 25 MByte

The performance of the CANopen Device Monitor depends on the used CAN interface
hardware. Especiallyat high bus load and high baud rates some CAN messages may be
lost.

1.2. Conventions

This manual uses the following conventions:

OPERATIONAL Communication states are written in capital letters.

tcl_command Tcl commands appear in Courier (constant width font).
Exceeds the length of a Tcl command line the paper width,
this line is finished with a \ (backslash) and continued in
the following line.

example Fragments of code and examples appear in Courier (con-
stant width font).

0x<value> Hexadecimal values are designated by the prefix ’0x’.

<key> Ke ys are designated by < >-braces.

<set_value> Replace set_value by the desired value if this term is a part
of a functional description.

[option] Replace option by an option of the function.

Page 8 of 125 CANopen Device Monitor Version: 3.2.7

"directory" Directories are signified with quotation marks.

Console → Save .. → All the users way through menus

1.3. Supportby port

port supports the user by telephone hot-line and by seminars.Additionally port offers
consultations in the whole field of CANopen e.g. network planning, network configura-
tion, selection of devices and CANopen and CANopen Profile implementations.

Version: 3.2.7 CANopen Device Monitor Page 9 of 125

2. Installation

The installation includes:

• the graphical user interface

• the m4d server and

• a layer 2 driver for the CAN interface.

For the installation the following steps are necessary:

1. Maybepreparing installation steps are necessary depending on the used CAN-
Interface. These steps are described in the fileINSTALL in the m4d directory on
the installation CD.

! Please read this file before you start the installation.

2. Execute setup.exe.

• Full Installation: The installation of all software components is happened auto-
matically and menu driven. This includes copying of all manuals.

• Customized Installation: The selection of software components is possible, which
can be installed. For the installation of the CANopen Device Monitor the following
components are necessary: CANopen Device Monitor, m4d and layer 2 driver.

3. For the icon on the desktop set the options for the call of the m4d server depending
on your application. An overview of the options are given by the help:

m4d -h

Alternatively the CANopen Device Monitor is able to start the CANopen server
(m4d). For additional hints please see section "Hardware Configuration"

4. Definethe working directory for the shortcuts on your desktop depending on your
application.

Page 10 of 125 CANopen Device Monitor Version: 3.2.7

3. Quick Start

3.1. Preparations

• Make sure that the CAN interface, the Layer 2 driver and the CANopen server
(m4d) are installed correctly.

• The path to the CANopen server (m4d) must be known (mostly in the CDM direc-
tory).

• The preferential method for the start of the CANopen server must be clear.

possibility 1: the m4d is started by the CDM on your local computer.

possibility 2: you start the m4d on an arbitrary computer in the network and the
CANopen Device Monitor connects to the m4d

• The name of the used CAN interfaces must be known. E.g.:

can0, can1 using can4linux

CHAN00, CHAN01 at the use of CPC hardware

Lpy2Pp and additional unit/device parameter at LevelX hardware

3.2. First program start

At the first start of the CANopen Device Monitor the following dialog window appears,
which can vary depending on operating system and available hardware.

Figure 2: Hardware configuration dialog

If the CDM shall only connect to a running CANopen server, select at CAN interface
"TCP". In this case you need to adjust only the host and the port of the server. The dia-
logue window can be closed with OK.

Version: 3.2.7 CANopen Device Monitor Page 11 of 125

In other case the following parameters must be typed in:

• CAN-Interface

• path to the CANopen server

• baud rate of the CAN bus

• name of can interface

If all parameters are configured, the dialog window can be closed with OK.The
CANopen Device Monitor starts the CANopen server now and the client-server architec-
ture gets in the background.

All settings in this dialog window can be changed any time via
Connection → CAN-Interface.

The CANopen Device Monitor starts the CANopen server now and at success the online
status is displayed in the status bar and the background of the entry field turns pink.

! A valid configuration of the hardware interface is saved by the CANopen Device
Monitor and can be reused at the next start of the program.Additionally it is possible to
activate Extras → Options → Auto-Connect so that the CANopen Device Monitor connects
automatically at every start of the program.

Figure 3: CANopen Device Monitor

Page 12 of 125 CANopen Device Monitor Version: 3.2.7

3.3. Communication with a CANopen device

Adjust the node ID of the CANopen device in the tool bar first. Please take into account
that the choice must be confirmed with "Set".

Figure 4: Toolbar

As a second step the EDS file of the device can be loaded viaFile →Load EDS. Alterna-
tively the mandatory objects can be accessed by the default EDS.

After the selection of an object in the EDS tree you can access it for reading and writing
on the "action tab" depending on the access type.When pressing "Send to object" only
the expression after the last blank is transmitted. It is possible to write mathematical
expressions into the entry field as well. The CANopen Device Monitor calculates them
and transmits the result to the device. However, the expression may not contain any
blanks.

Figure 5: Formulas in the entry

The "NMT tab" serves for sending NMT commands. This can be torn off l ike every tab
from the anchorage in the CANopen Device Monitor out into a separate window.

Version: 3.2.7 CANopen Device Monitor Page 13 of 125

Figure 6: Separation of a tab

The upper command bar serves for sending the NMT commands to the whole network
and with the lower one the current node is addressed.The current node can be changed
quickly by the node buttons in the lower part of the NMT tab.

Page 14 of 125 CANopen Device Monitor Version: 3.2.7

4. Configuration

The Device Monitor can be adapted to the personal environment. Thisadaptation can be
stored in the file "<working directory>\cdm.rc" with the exception of the CAN bit rate.A
pattern of the file cdm.rc is located in the "<CDM directory>".The bit rate is specified as
start-up option of the m4d-server. It is valid for the CANopen Network, not only for one
Device Monitor instance. During start-up the Device Monitor loads the file "<working
directory>\cdm.rc".

Please use an editor that is capable of handling LF line endings correct.Do not use
notepad.exe.

! The following sub section can be skipped, if the CANopen server (m4d) is started by
the CANopen Device Monitor. For additional hints please see section "Hardware Config-
uration"

4.1. Setting of the CAN Bitrate

The CAN bit rate will be set at the call of the m4d-server:

Windows™: A:\ProgramFiles\CANopen> m4d_<driver>_s.exe -b <CAN bit rate> -S
Unix: /usr/bin $ m4d_s -b <CAN bitrate> -S

All CAN bit rates defined in CANopen are available.

4.2. Loading of the Object Dictionary

Every device manages its parameters in an object dictionary. The object dictionary can
be stored in a CANopen defined format, the Electronic Data Sheet or EDS file.Every
device has its own EDS file. During start-up the Device Monitor can load a default EDS
file.

If you exchanged CANopen Devices you can load the EDS File of the CANopen device:
File → Load EDS

The management of the EDS files is simplified by the EDS repository. The repository is
a directory that contains all EDS files.Via Extras → Options → EDS-Repositor y the EDS
repository can be configured. If the EDS repository is configured correctly, the following
dialog appears when loading an EDS file viaFile → Load EDS

Version: 3.2.7 CANopen Device Monitor Page 15 of 125

Figure 13: EDS choice box

4.3. Device Specific Settings

If the Device Monitor loads a new EDS file, at start-up or if selected byFile → Load EDS
it looks also if a device description or device configuration file with the same name as the
EDS file but the extension .rc is available. Thisfile has to be in the same directory like
the EDS file.

EXAMPLE:

device_v1_1.eds and device_v1_1.rc→ right

device1_1.eds and device_v1_1.rc→ wrong

This configuration file is used for the storage of device specific settings. That can be
local definitions or assignments, like the definition of sliders for special objects but also
statements with CANopen commands to initialize objects within the CANopen devices
object dictionary.

After the installation of the Device Monitor the CDM directory contains some examples
for device configuration files.

4.4. Start-Up Scripts

A Tcl/Tk-script which is loaded at the start of the CANopen Device Monitor can be spec-
ified with the global variableautoExecScript in the configuration file cdm.rc.

Page 16 of 125 CANopen Device Monitor Version: 3.2.7

EXAMPLE:

specify start-up script

set autoExecScript "demo.tcl"

This script (e.g.demo.tcl) is loaded after the complete start-up of the CANopen
Device Monitor. That means that start-up actions like loading the last project file or auto-
matically connect to the network are carried out before loading the script.

Version: 3.2.7 CANopen Device Monitor Page 17 of 125

5. CAN-Interface Configuration

As extension to the previous described method the CANopen Device Monitor is also
capable to start the CANopen-Server by itself. Thereby the CANopen Device Monitor
handles the start, the connection establishment, and the closing of the CANopen-Server
(m4d) automatically.

At the first start of the CANopen Device Monitor after the installation the configuration
dialog opens automatically. After that the hardware configuration can be opened by
Connection → Configure CAN-Interface

The other method with a separate start of the CANopen-Server is still possible, so that its
advantages like a remote-control of device via a TCP/IP network can be used, too.

5.1. Configuration Dialog

Figure 14: Hardware configuration dialog

Is TCP selected as "CAN-Interface", so the CANopen-Server has to be started separately
and all other options in the dialog are disabled.The desired options have to be passed to
the CANopen-Server at its start.

The following options are available for all supported hardware interfaces:

Option Description
CANopen-Server pathto the CANopen-Server (m4d)
Baud Rate CAN Baudrate [kbit/s]
TCP port TCP-port used for the communication between the CDM

and the CANopen-Server (m4d)

Page 18 of 125 CANopen Device Monitor Version: 3.2.7

local node-ID Node-ID of the CANopen-Server (m4d)
Send PREOP at exit automatic transmission of the NMT command ENTER

PREOPERATIONAL to all devices when the CANopen-
Server is shut down

Keep server running at exit the CANopen-Server will not be closed when the CDM is
closed

Depending on the hardware interface some additional options like device, channel, board
or unit can be present.These options distinguish the connected device or the desired
communication channel.

The CANopen Device Monitor searches for all installed drivers and CANopen-Server and
offers only the installed drivers at the option CAN-Interface. Mostlyit’s only one driver
plus TCP as default option.

Version: 3.2.7 CANopen Device Monitor Page 19 of 125

6. Object Dictionary Accesses

The object dictionary is the data interface between the CANopen Device Monitor and the
CANopen device. TheCANopen Device Monitor can access every object in the object
dictionary for reading or writing by index/subindex. CANopensubdivides the objects
into various groups:

Index Objects
0000h - 0FFFh common types
1000h - 1FFFh communication objects
2000h - 5FFFh manufacturer specific objects
6000h - 9FFFh profile objects
A000h - AFFFh objects for network variables

The CANopen Device Monitor shows the object dictionary loaded from the Electronic
Data Sheet (EDS file) of the device in a tree-structure.

An EDS can be loaded for each device in the network. After the selection of a device its
object dictionary is displayed and communcation with the device is possible.

Using the tab Action objects can be accessed by SDO transfers.

Figure 15: Tab Action

Write object

select the object in the tree

set value in Action tab→ Value Entry Frame

Page 20 of 125 CANopen Device Monitor Version: 3.2.7

execute SDO transfer by Action→ Send to Object

Read object

select the object in the tree

execute SDO transfer by Action→ Receive from Object

the received value is shown in Action→ Value Entry Frame

Because of the fact that reading an object may trigger an unwanted reaction an object is
only read on request.But if Extras → Options → Read object on selection is active the
selection of an object triggers the SDO transfer to read this object.

Value Entry Frame
Hexadecimal values are designated by the prefix 0x (example: 0x10).

Enter strings consisting of one or more parts without quotation marks. Spaces at
the end of the string will be ignored.

Is this field empty, the value 0 will be sent.

 deletes the contents of this field.

<ENTER> sends the value.

<Shift ENTER> If an URL is in this entry, the web browser is started.

The last word of the value in the entry field is evaluated as a mathematical expres-
sion before sending it with an SDO transfer.

Try to put something like:0x180+10in it.

Component of DCF file
By this checkbutton the object is marked for DCF file handling (see chapter "Data
Management with DCF File").

Used for saving configuration
If this check box is activated, the CANopen Device Monitor marks this object for
storing its value in a object configuration (*.ocf) file (see chapter "Object Data
Management with ocf File").

Cyclic update
If this check box is activated, the value is read and updated cyclically. Active bit
boxes and slider displaying the value of this object are updated too.

Receive from Object
The object value will be requested by SDO.

Send to Object
The object value will be set (written) by SDO.

Version: 3.2.7 CANopen Device Monitor Page 21 of 125

- The value in the field Value Entry Frame will be decremented by 1.Thereafter it
will be sent to the device automatically.

+ The value in the field Value Entry Frame will be incremented by 1. Thereafter it
will be sent to the device automatically.

Page 22 of 125 CANopen Device Monitor Version: 3.2.7

7. Menu Structure

7.1. File

Load EDS Loads an EDS file
Load default EDS Loads an EDS file with mandatory objects
Recent EDS files List of recently used EDS files
Load device configuration Loads OCF or DCF files
Save device configuration Saves OCF or DCF files
New Project Starts a new project
Load Project Loads an existing project
Save Project Saves a project
Exit Exits CANopen Device Monitor

7.2. Edit

Cut Cuts selected text into clipboard
Copy Copies selected text into clipboard
Paste Pastes text from clipboard

Version: 3.2.7 CANopen Device Monitor Page 23 of 125

7.3. View

Toolbar Toggles the view of the toolbar
Status Bar Toggles the view of the statusbar
Console Toggles the view of the console (only full version)

Message Log Toggles the view of the log window
Network View Toggles the view of the network overview

7.4. Connection

Connect Connects to the CANopen server resp. starts the
CANopen server

Disconnect Closes the connection to the CANopen server resp.
closes the CANopen server

Online Read and write accesses are performed directly with
the device

Offline Read and write accesses are performed with the
DCF data buffer

Interface Opens the dialog to configure the CAN interface

Page 24 of 125 CANopen Device Monitor Version: 3.2.7

7.5. Extras

Scan Obj Dict (Comm) Scans the communication profile segment of the
object dictionary

Scan Obj Dict (Device) Scans the device profile segment of the object dictio-
nary

Edit Obj Dict Opens a simple OD-Editor. It is e.g. useful to add
dynamic OD entries.

Export EDS File Exports a scanned object dictionary as EDS file.1

Send object values to device Transmits the values of all objects with DCF-compo-
nent-flag to the device.

Read object values from deviceReads the values of all objects with DCF-compo-
nent-flag from the device.

Store/Restore non-volatile
parameters

Store or restores the configuration of the device in its
non-volatile memory.

Convert to concise DCF Converts DCF-files into the concise format
Plug-ins Menu to load plug-ins
Options Opens the option dialog

1 The exported file can be read again by the CANopen Device Monitor, but it is no
complete EDS file according to the standard.

Version: 3.2.7 CANopen Device Monitor Page 25 of 125

7.6. Windows

Clear All
Cascade
Tile vertical
Tile horizontal

Clears the console and the log window
Cascades all open windows
Tiles all open windows vertically
Tiles all open windows horizontally







except of
the main
window

7.7. Help

Help Shows the on-line help
CDM Wiki Opens the CDM wiki in a web browser
About Shows version and licence information
Latest Release Info Fetch information about updates from the internet

Page 26 of 125 CANopen Device Monitor Version: 3.2.7

8. Toolbar

The toolbar is explained in the following illustration.

Figure 16: Toolbar

Version: 3.2.7 CANopen Device Monitor Page 27 of 125

9. Options

9.1. General Settings

Read object on selection read object immediately on selection
Auto-Connect Connect to server at start-up
 deletes complete entry field key deletes complete input field in value

entry frame.
Reload last project file at start up. The lastly used project file is opened automati-

cally at start up of the CANopen Device Monitor.
Save all settings at exit All settings (options and connection settings) are

saved automatically.
Reuse last EDS for empty nodes The last EDS file is used for other node-IDs with-

out assigned EDS file.
Copy EDS files to project directory The EDS files are copied from the repository to

the project folder, if it is saved.
EDS repository Configuration of the directory for the EDS reposi-

tory

Page 28 of 125 CANopen Device Monitor Version: 3.2.7

9.2. DCF Settings

Set DCF flag on change sets the DCF component flag at change of an
object

Download configuration after
DCF import

Automatic download of the configuration after
DCF import

Save configuration after
download

Automatic saving of the configuration after down-
load

Update ’Verify Configura-
tion’ object after download

Automatic update of the object 0x1020 with the
current configuration time

9.3. Network Settings

Version: 3.2.7 CANopen Device Monitor Page 29 of 125

SDO Timeout (ms) SDO timeout in ms
Automatic Bus Off Recovery Automatic Bus-On after a Bus-Off event
Emergency Reception Reception of Emergency messages by the

CANopen Device Monitor and forwarding to
Emergency handler functions

SDO Domain Timeout (ms) SDO timeout for domain transfers in ms

9.4. Color Settings

This dialogue allows the configuration of specific colors for objects with different access
types.

9.5. Font Settings

This dialogue allows the configuration of specific fonts for different GUI elements.

Page 30 of 125 CANopen Device Monitor Version: 3.2.7

10. NMT Tab

10.1. NMT commands

For the execution of NMT services this tab provides some buttons:

Button Description
Start Network Set all nodes in the state OPERATIONAL.
Start Node Set the node with the active node-id in the state OPERA-

TIONAL.
Preop Network Set all nodes in the state PRE-OPERATIONAL.
Preop Node Set the node with the active node-id in the state PRE-OPERA-

TIONAL.
Stop Network Set all nodes in the state STOPPED.
Stop Node Set the node with the active node-id in the state STOPPED.

Reset Comm Send the NMT command Reset Communication.
Reset Node Send the NMT command Reset Node.

Enable Sync Starts the cyclic transmission of the SYNC message
Disable Sync Stops the cyclic transmission of the SYNC message
One Sync Sends one SYNC message

The control of the state machine is also possible by the console.

10.2. User defined scripts

By pressing the buttons "Script "1 to "Script 4" scripts with the file names script1.tcl -
script4.tcl are started, if this files can be found in the current working directory or in the
program directory. "Test" starts the scriptt_start.tcl, if it exists. Modify these scripts to
match your needs and use them to automate repetitious tasks, like configuring a device.
Tooltips over each button show the first line of the corresponding script file. So the first
line of a script contains a comment about the content of the scripts.Additionally the last
word of the first line of a script can be a valid color definition (e.g. red or #ffaa11) to
modify the background color of the specific button. Within these scripts all CDM-com-
mands are available.

This function is only available in the full version. Usingthe eval version only integrated
demo scripts can be loaded.

Version: 3.2.7 CANopen Device Monitor Page 31 of 125

10.3. Network overview

After scanning the network the buttons for the nodes get different colors.

Color Meaning
background color no node found
blue node found
yellow active node during network scan

To change the active node simply press the button with the desired node-id. If an EDS-
file has been loaded already for this node, it is displayed in the EDS tree. Otherwise an
EDS-file for this device can be loaded.

For all nodes different EDS files can be loaded.

10.4. Device Information

Figure 17: Device information

When moving the mouse over found nodes device information are displayed as a tool tip.

Page 32 of 125 CANopen Device Monitor Version: 3.2.7

11. Description Tab

11.1. Object Description

Figure 18: object description

The object description contains additional information about the selected index of the
object dictionary. Beside the actual description the object code for complex objects or the
data type and the default value is shown, too.The object description for each index is
read from the object description file.

11.2. Object Description File

Because of the restrictions of the old EDS format (according to DSP-306), it is not possi-
ble to add object descriptions to an EDS file.Therefore this additional information is
stored in a separated object description file. See file structure below:

index1:
object name 1

description line 1
description line 2
description line n

index2:

Version: 3.2.7 CANopen Device Monitor Page 33 of 125

object name 2

description line 1
description line 2
description line n

The data format for the indices is hexadecimal without leading "0x".An example object
description file islib/ds301.txt with descriptions for the objects from the commu-
nication profile. When an EDS file is loaded, the CANopen Device Monitor looks for a
file with the same name as the EDS but with the extension.txt If such a file is found, it
is loaded as object description file for this EDS. Otherwise only the data type or the
object code is displayed.

The CANopen DesignTool byport creates object description files automatically.

Page 34 of 125 CANopen Device Monitor Version: 3.2.7

12. Overview Tab

12.1. Index Overview

With the object overview tab all sub indices of an array or record an be read or written at
once.

Figure 19: Index overview

Some rescritions exist when reading or writing sub indices. Sub indices with the data
type "domain" cannot be read or written and PDO, PDO mapping and SRDO objects can-
not be written from the overview tab. For these objects it is required to meet a specific
order when writing to them, but they can be configured by the PDO configuration tab or
the SRDO configuration tab (requires Safety PlugIn).

Version: 3.2.7 CANopen Device Monitor Page 35 of 125

13. PDO Configuration Tab

The PDO tab simplifies the configuration of PDOs. At the selection of a PDO object in
the EDS tree, the mask is updated with values from the EDS.The PDO parameters sim-
ply can be adjusted over the mask.New objects can be moved from the EDS tree into the
mapping table by drag&drop.A double click deletes them within the mapping table.
The table is unalterable at a static mapping.

Figure 20: PDO Tab

Page 36 of 125 CANopen Device Monitor Version: 3.2.7

The following table describes the buttons in the lower part of the mask.

Option Description
Read from EDS Reads the values from the EDS file

Read from Device Reads the current values from the device

Send to Device Transfers the entered values to the device

Store to DCF data Store the entered values into the DCF data buffer

Send PDO Sends the current PDO to the device. Thevalues of
the PDO are taken from the entries above. Take into
account that PDOs only can be sent or received in
the state OPERATIONAL.
Only at RPDOs of the device.

Show PDO in Chart A PDO Indication function is configured so that the
values of this PDO are displayed in the chart Tab.
The device must be configured correspondingly
before. Take into account that PDOs only can be
sent in the state OPERATIONAL by the device.
Only at TPDOs of the device.

13.1. Configurationof PDOs for the chart

After pressing the button "Show in Chart" the following dialog window is opened.

Version: 3.2.7 CANopen Device Monitor Page 37 of 125

Figure 21: Chart configuration mask

The title of the chart and of the axes and the names of the data can be configured there.

If the update interval is not 0, the chart is updated by a time-trigger mechanism.I.e.
arriving data are written into a buffer and after a certain amount of time the values of the
buffer are displayed in the chart. If the update interval is 0, the chart is updated at every
arriving PDO. It it’s an asynchronous PDO, the information about the time of the arrival
of the data is lost.

At Color the color of a signal can be configured.Every color that is supported by Tcl/Tk
can be used. Otherwise the colors can be specified in hexadecimal notation like #ff aa11.

Page 38 of 125 CANopen Device Monitor Version: 3.2.7

14. Process Tab

The process image Tab serves the observation of process quantities of different nodes.
The values of the individual objects are queried and updated cyclically by SDO every
1000 ms (per default). Normally, the values are read only if the tab is active. To update
the values in every cycle, activateUpdate even in background.

Figure 23: Process image

Add single objects by Drag & Drop from the EDS tree. The small button besides the
value of the object serves for deleting. Whole arrays or records can be added by adding
the main index. Thedisplay format (hexadecimal, decimal, binary or ASCII) can be con-
figured at the combobox in front of the value. Itis ignored by string values.

The settings of the process image can be saved with the complete CANopen Device Mon-
itor project via "File→ Project→ Save Project". Whenthe project is opened again, the
process image settings are restored.

Version: 3.2.7 CANopen Device Monitor Page 39 of 125

15. PDO Process Tab

The PDO Process Image tab displays the data of TPDOs from the CANopen network.

There are 2 ways to add Transmit PDOs of the CANopen nodes to the PDO process
image:

• Drag&Drop the PDO object from the object tree into the PDO process image

• via the button "Add to PDO Image" in the PDO configuration tab.
To delete all PDOs press the right mouse button and selectClear PDO Process Image
This also resets the PDO settings in the CANopen server(m4d). It is sometimes
required to reset the PDO settings directly in the CANopen server if it has not been
started from the CDM. .

The display of the data is updated every 1000 ms when the PDO process image tab is
active. To update the values even when the tab is not visible, activate Update even in
background.

Figure 24: PDO Process image

The settings of the process image can be saved with the complete CANopen Device Mon-
itor project via File → Project → Save Project When the project is opened again, the
process image settings are restored.

Page 40 of 125 CANopen Device Monitor Version: 3.2.7

16. Using Stripcharts

For data visualization the pre-installedChart tab can be used. It shows as an example
the usage of a strip-chart.

After opening theChart tab, a strip-chart is displayed. Besides for the visualization of
PDO data, it can be also used by scripts.Values are given to it by calling the Tcl-proce-
dure::cdm::addChartData . The procedure is defined as follows:

proc ::cdm::addChartData { valueList } {
add new values to the strip-chart window

}

valueList contains a list of values for the strip-chart:

(EDS) 9 % ::cdm::addChartData {1 2 3 }
(EDS) 10 % ::cdm::addChartData {-1 -2 -3}

Figure 26: strip-chart after two calls to::cdm::addChartData

Version: 3.2.7 CANopen Device Monitor Page 41 of 125

With little effort you can write your own simple script that reads values from a device and
displays them in the chart.

% proc readAndShow { index sub dataType } {
set value [r $index $sub $dataType]
cdm::addChartData [list $value 0 0 0]

}
%
% # Call this procedure every second
% ::common::every "readAndShow 0x6401 0x01 i16" 1000
%

Windows -> Clear All ,::cdm::clearChart or F7 clears the chart and the <space>
key pauses the display.

The console or script command::cdm::saveChart <fileName> saves the con-
tent of the chart to a postscript file.

The chart can be zoomed by the right resp. left mouse button.

The context menu provides the following actions:

Menu entry Description
Clear Chart Deletes all values from the chart.
Save Chart Saves the current picture as PostScript file.
Save Data Saves all vales as CSV file.

Remove PDO Stops PDO reception and adding of further values.

Page 42 of 125 CANopen Device Monitor Version: 3.2.7

17. Extended object configuration

17.1. Slider

Optionally the tabbed field Action can be extended by further elements.A possible ele-
ment is a slider (Figure 27).

Figure 27, Tabbed field Action with slider

A slider consists of a regulator and a scale. The regulator is moving. For operating use
the following keys:

• If the left mouse button is pressed in the trough, the scale’s value will be incre-
mented or decremented by the value of the resolution option so that the slider
moves in the direction of the cursor. If the button is held down, the action is
repeated.

• If the left button is pressed over the slider, the slider can be dragged with the
mouse.

• If the left button is pressed in the trough with the control key down, the slider
moves all the way to the end of its range, in the direction towards the mouse cursor.

• The ’up’ and ’left’ cursor keys move the slider by one to left.

• The ’down’ and ’right’ cursor keys move the slider by one to right.

Further a storage of the object values with the optionused for saving configuration is
possible.

Version: 3.2.7 CANopen Device Monitor Page 43 of 125

17.2. Slider in a Top Level Window

A slider in a top level window can be assigned to an object. This window stays at the
desktop even if other objects are selected in the tree structure.

Figure 28: Slider in a top level window

The slider actions are the same as described for the Action tab slider above.

Close object window
The top level window can be closed by selecting the button labeled with "Close
object window"

Page 44 of 125 CANopen Device Monitor Version: 3.2.7

17.3. Switch Box Display of Objects

Each numerical object can be displayed bitwise in a unique window.

Figure 29: Bit box in a top level window

All object extension can be activated by pressing the right mouse button in the object tree.

Figure 30: Configuration of the GUI Extension

The assignment of slider and bit boxes to particular objects can be saved in a OCF file.

Version: 3.2.7 CANopen Device Monitor Page 45 of 125

18. Usage of Octet strings

18.1. Value entry frame

In the value entry frame octet strings can be written to or read from the device. To write
an octet string to a device select an object with data type octet string. Then two entries
will appear in the value entry frame. The octet string can be typed into the upper entry.
To specify non-printable values use the\x00 notation. Itmust belower-caseletters and
it requires exactly 2 digits after the\x . ASCII characters can be used as well.

EXAMPLE:

\x00\x01\x02\x03\x05\x06\x07\x08\x09\x0a\xff\xfeHello World\x0a\x00

Hit "RETURN" to send the octet string to the device. Pleasenote that the size of an octet
string is limited to 127 characters.

Figure 31: Octet strings

If an octet string is read from the device, it’s displayed twice.The upper entry shows the
value in \x00 notation and below it is displayed as ASCII values.

Page 46 of 125 CANopen Device Monitor Version: 3.2.7

18.2. Octet strings in scripts

There are two ways to send or receive octet strings from scripts. The first one is to use
the normalr or wcommands. Inthis case the data must be specified as base64.

EXAMPLE:

w 0x2000 0 os "SSBsaWtlIENBTm9wZW4gRGV2aWNlIE1vbml0b3I="

To decode or encode base64 data, the built-in tcl commands:

• ::base64::encode <raw_data>

• and ::base64::decode <base64_data>
can be used.

EXAMPLE:

w 0x2000 0 os [::base64::encode "any data"]

The other way is to use the 2 special commands:

• ::m4d::ro <index> <sub> <timeout in ms> to read octet strings

• and ::m4d::wo <index> <sub> <timeout in ms> <data> to send
octet strings.

EXAMPLE:

::m4d::wo 0x2000 0 1000 "start engine"

Version: 3.2.7 CANopen Device Monitor Page 47 of 125

19. User Specified Tabs

In addition to the predefined tabbed fields (or "tabs") at the right side it is possible that
you add your own tabbed fields to CANopen Device Monitor.

There are 2 kinds of tabs available:

• User specified tabs with support of tests

• User specified tabs without contents

19.1. User specified tabs with support of test

One of an additional tab is also predefined but only installed on request. It is used to
organize test scripts to be controlled by the CANopen Device Monitor. It provides lists of
check-boxes for the user defined test scripts.

Figure 26: User Defined Tabbed Field with Test Scripts

An example can be found in the directory "<working directory>\demo_t\".

Configuration of the predefined tab for test organization is done by configuration files

• "<working directory>\demo_t\t_start.tcl" and

• "<working directory>\demo_t\t_<conf1...n>.tcl".

The file "<working directory>\demo_t\t_start.tcl" configures all preconditions for testing.
It also defines all additional tab using the commandcdm::addTestTab . Figure 26
shows an example for an additional tab.

Page 48 of 125 CANopen Device Monitor Version: 3.2.7

cdm::addTestTab t_conf {<tab_name>}

Description
Creates an additional tab on the right side of the CANopen Device
Monitor. It is predefined for organizing test scripts. It contains a wid-
get with several check-boxes for selecting test scripts. Number and
names of the check-boxes are read from the configuration file "<work-
ing directory>\<t_conf1..n>". Additional buttons are available for
starting, stopping and global selection of test scripts.
If tab_nameis not given, the name is built as "Test#" counting from 1
for each new tab.

Parameters:
t_conf nameof the file containing the names of the test scripts

defaults tot_files
tab_name namefor labeling the tab

Return:
internal name of the tab

Format of the <working directory>\t_files:
Lines beginning with ’#’ are comments and are ignored. Each line describes one addi-
tional check-box:

<script>.tcl {<label>} {Tcl procedure name}

script.tcl Nameof the Tcl script that is to be executed
label Namelabel for the check-box
Tcl procedure name Tcl procedure that carries out the test. If the test was com-

pleted successfully the procedure shall return ’0’.Any
other return value means an error occured. If the proce-
dure has a parameter the test description from the
t_files is passed in this parameter.

Script name, label and Tcl procedure are separated by space or tab.

In addition special Tcl procedures can be registered for Start ofa test run, Abort of a test
run, Error of a test and End of a test run.The Tcl procedures are specified as follows and
are only executed for the test tab they were specified for:

@start <Tcl Procedure>
@abort <Tcl Procedure>
@error <Tcl Procedure>
@end <Tcl Procedure>

EXAMPLE:

Version: 3.2.7 CANopen Device Monitor Page 49 of 125

Tw o additional tab are created. The first is named with the default name "Test" the second one gets the

name "Some Test". Bothtabs are assigned different example scripts. Figure 26 shows the result.

t_start.tcl:

add the test selection frames
use standard values for the file (t_files) and name (Test)
cdm::addTestTab
use user-defined values for the file (t_files2) and name (Some Tests)
cdm::addTestTab t_files2 {Some Tests}

proc my_startHandler { args } {

cdm::banner
}

proc my_stopHandler { args } {

puts "\n\n\n\n------------------------"
puts " date / sign"
puts "\n================= E N D ================================\n"

}

t_files:

t he first set of test scripts using the standard filename
#
@start my_startHandler
@stop my_stopHandler

t_myfirst.tcl {my first test} my_1st_test
t_mysec.tcl {my second test} my_2nd_test
s canning the network for CANopen devices
t_scan.tcl {scan the network} scan_test

t_files2:

all testfiles for the second set of tests
c omments allowed after
#
Here we do not specify start and stop handlers
s o t hey won’t be called.
t_scan.tcl {scan the network} scan_test
t_myfirst.tcl {my first test} my_1st_test
t_mysec.tcl {my second test} my_2nd_test
t_mythird.tcl {another} my_3rd_test

Page 50 of 125 CANopen Device Monitor Version: 3.2.7

t_myfirst.tcl

#
Write Heartbeat Producer and check if value can be read back.
#
#
proc my_1st_test { args } {

wwc 0x1017 0 u16 1000 OK
if { $::global_stop == "1" } {

return "Canceled
}
rrc 0x1017 0 u16 1000

return 0
}

The tabs are visible after loading the file with the tab specification.Loading can be done
via the menuFile → Load File → t_star t.tcl or by issuing thesource command in the
Console:

$ s ource t_start.tcl

Once after loading the new tab, any changes at the files "<working directory>\t_start.tcl"
and "<working directory>\t_<t_conf1...n> are only recognized and valid after a restart of
the CANopen Device Monitor and reloading of "<working directory>\t_start.tcl".

The tabs for testing contain the following additional control buttons:

Select All
mark all scripts for execution

Select None
deselect all check-boxes, remove all scripts from execution

Start Test
start loading and executing of the selected test scripts

Abort Test
stop execution of test scripts
Normally the execution stops at the end of the currently running script. If a run-
ning script has to abort immediately, it must do some preperations. The script must
look for the state of the global variableglobal_stop. If the "Abort Test" button is
selected the value ofglobal_stopis set to 1. The script on the other side must not
block the User Interface event loop so that the user is be able to select the Stop but-
ton. Therforethe Tcl functionupdate must be called regularly.

EXAMPLE:

Version: 3.2.7 CANopen Device Monitor Page 51 of 125

Template for testingglobal_stopin test scripts

global variables
global global_stop

i nitialize global variables
set global_stop ""

execute application
while { ($global_stop == "") } {

.

.
r ead actual value of global_stop
and update the GUI
update

}

19.2. User specified tabs without contents

A new tab will created by the following command:

cdm::addTab {<title> <pos>}

Description
creates an additional empty tab

Parameters:
title nameof the tab
pos positionof the tab in the display

default: append as last tab

Return:
internal name of the tab

The empty tab can be designed by the application by input of Tcl commands at the
Console or by Tcl scripts.

EXAMPLE:

Create an empty tab at position 0 with the title "Service".
set name [cdm::addTab Service 0]

Create a button in the center of the bottom of the tab
with the name "OK".
button $name.button -text "OK" -command {w 0x1017 0 u16 500}
pack $name.button -side bottom -anchor center

Page 52 of 125 CANopen Device Monitor Version: 3.2.7

19.3. Erasing User Specified Tab-sets

Tab-set can be deleted with the command:

cdm::deleteTab {<pos>}

Description
deletes an additional tab

Parameters:
pos positionof the tab in the display (starting with 0)

Return:
nothing

Version: 3.2.7 CANopen Device Monitor Page 53 of 125

20. Data Management with DCF File

The CANopen Device Monitor can handle object values as DCF files (ASCII format)
according to CiA-306 as XDC files (XML format) according to CiA-311 with the follow-
ing features:

object code
VAR yes
ARRAY yes
RECORD yes
DOMAIN no

compact storage
for PDOs analog to EDS
for Arrays no

Denotation no

The base of the DCF file handling is the EDS file, therefore it is not possible to load or
save a DCF file without loading of EDS file before.The handling of DCF files is also not
possible when the object dictionary is scanned from the device.

Only theObjectList is support when using XDC files.

20.1. Creating a DCF file

The file name of the DCF file can be selected freely by the user.

Objects which are relevant for the DCF file have to be marked by the checkbutton "com-
ponent of DCF file" on the tab field Actions.

The CANopen Device Monitor communicates via SDO with the device by the usage of
an internal data buffer.

Page 54 of 125 CANopen Device Monitor Version: 3.2.7

DCF File

DEVICE

Load

Save

DCF File

 Send to
 Device

Read from
Device

Set object value

Internal data buffer in the Device Monitor

Figure 33: DCF data flow

20.2. Load

DCF files can be loaded viaFile → Load device configuration → Load DCF

Before a DCF file will be loaded, the CANopen Device Monitor executes a consistency
check. The DCF file has to match to the EDS file. Criteria for the consistency check are:

• The EDS file name entered in the DCF file (LastEDS).

• The date and time of creation/modification in the EDS and DCF file.To guarantee
the consistency of the object dictionary the EDS file has to be older than the DCF
file.

Loading of a DCF file does not change the CAN bit rate and the node-id in the CANopen
Device Monitor. The parameter values are only loaded to the internal data buffer of the
CANopen Device Monitor and are transfered to the device after Send (see chapter "Data
Management with DCF file/Send").

20.3. Send

All selected parameter values will be sent from the internal data buffer of the CANopen
Device Monitor to the device per SDO viaExtras → Send conf to Device Sending is also
allowed when the parameter values are not stored in a DCF file.

Version: 3.2.7 CANopen Device Monitor Page 55 of 125

21. Offline Mode

The SDO communication to the device can be switched on/off with the options off-
line/online in the menuConnection when the Device Monitor is connected.Therewith it
is possible to create a DCF file without communication with the device.

Figure 34: SDO communication depending on the options offline/online

Page 56 of 125 CANopen Device Monitor Version: 3.2.7

22. Object Data Management with OCF File

22.1. Saving of OCF files

The values of configured objects of CANopen devices and additionally settings of bit
boxes, slides and object specific commands can be stored in a file for restoring them auto-
matically in another session.

The objects to be stored are selected by an active check-box labeled with "used for saving
configuration" at the tabbed field Action.

The configuration can be stored by the menu:
File → Save device configuration → Save OCF . Each value is obtained from the CANopen
device in the moment it is stored.The command to save object values results in CAN
traffic with SDO transfers.

The CANopen Device Monitor does not automatically set the file extension.

In difference to the DCF file the OCF file needs less memory, because the OCF file only
contains the selected parameter values.

22.2. Loading

Saved object values stored in a configuration file can be reloaded to the CANopen device
with the menuFile → Load device configuration → Load OCF . The values are transfered
from of the configuration file to the CANopen device which result in CAN traffic by SDO
transfers.

22.3. File Format

The first lines contain some header information for maintaining the data, like CANopen
Device Monitor version, time and date.The device configuration file contains commands
for the CANopen Device Monitor for writing values to a device. Additionallythe config-
uration of bit boxes and sliders is saved in the OCF-file.

EXAMPLE:

OCF file for: SPC Operating Interface
c reated by CANopen Device Monitor V3.2.7
Wed Mar 30 14:48:40 (CEST) 2005
w 0x100C 0 u16 100
w 0x2000 0 u8 67
::cdm::setSlider {} 100D 000 "0 255 1"

Version: 3.2.7 CANopen Device Monitor Page 57 of 125

23. Console

The Console can be activated via View → Console

In the console Tcl commands can be executed as well as user scripts and procedures.

Figure 35: Console

23.1. Tcl Commands

A description of the Tcl script language exceeds the scope of this manual.To illustrate
some special features and basics some simple examples will be given for using Tcl com-
mands in the Console window.

The bibliography refers to books and web pages for the Tcl language.

EXAMPLE:

set val 5 ;#set the variable val to the value 5
set val ;#show the current value of the variable val
puts "Hello" ;#put the word Hello at the Console
c omment
set myarray(baud) 19200 ;#define the array myarray
set myarray(parity) even
v ariables are referenced by using its name preceeded with "$"
puts "Bitrate: $myarray(baud)" ;#reference of the array myarray

Further information can be found atwww.tcl.tk 〈http://www.tcl.tk 〉.

Page 58 of 125 CANopen Device Monitor Version: 3.2.7

23.2. Scripts

Sequences of Tcl commands inclusive of controlling structures can be created with a text
editor. These files used to have the extension *.tcl and can be loaded from the CANopen
Device Monitor:

per menu: File → Load File
interactively: input in the Consolesource <file>.tcl

Command sequences can be combined to procedures. The procedure is executed by call-
ing the name of the procedure.

Procedures saved in Tcl files are available after loading the script file.

EXAMPLE:

file example.tcl:

- ---
s how Hello
- ---
proc showHello { name } {

puts "Hello $name"
puts "How are you?"
return

}

load the script with the source command in the Console:

source example.tcl

execute the defined procedure in the Console interactively:

$ s howHello Heinz
Hello Heinz
How are you?

Version: 3.2.7 CANopen Device Monitor Page 59 of 125

24. Scripting with PDOs

To test the PDO handling of a device or to simulate complex control processes, PDOs can
be configured, sent, received and requested by scripts and by console commands.

! After a modification of the PDO configuration by Tcl/Tk-Scripts the reception and
the transmission of PDOs in the PDO mask is not supported anymore.

As the CANopen Device Monitor resp. the CANopen server acts like a CANopen device
within the network, PDOs must be configured internally, so that they can be sent or
received.

24.1. Configuration of PDOs in scripts

To configure the PDOs the point of view of the remote device is used. PDOs, sent from
the device are TPDOs and PDOs, that are received by the device are RPDOs.To config-
ure the PDOs the commands::pdo::set_tpdo und ::pdo::set_rpdo can be
used. Thefollowing example shows the configuration of a TPDO.For RPDOs it is simu-
lar and described in the section "PDO commands".

EXAMPLE:

The device has one TPDO (TPDO No. 1), which contains the objects 0x6000:1 and 0x6000:2. It is trans-

mitted event-trigged by the device. ItsCOB-ID is 0x221.

The appropriate call to::pdo::set_tpdo is:

::pdo::set_tpdo local 1 0x00000221 event 0x6000 1 0x6000 2

The parameter ’local’ means, that only the CANopen Device Monitor shall be configured.If it were

’remote’, the remote device would be configured accordingly as well using SDOs.

The1 is the number of the PDO. It is of importance for further commands.After that follows the COB-ID

and the transmission type.

The last parameters are the mapped objects.They hav e to be specified as pairs of index and sub index.

Please regard that the EDS file for the device must be loaded and that the objects must exist in the EDS file.

To change an already configured PDO, it must be deactivated before.To deactivate the
PDO, the MSB of the COB-ID must be set to 1. The COB-ID to deactivate the PDO in
the example above is 0x80000221.

Page 60 of 125 CANopen Device Monitor Version: 3.2.7

24.2. Tr ansmission of PDOs

To send a PDO from the CANopen Device Monitor to the device, it must be configured
previously with ::pdo::set_rpdo , because it is a RPDO of the device. After that it
can be sent by::pdo::wpdo to the device.

EXAMPLE:

The RPDO 2 of the device shall receive two UNSIGNED16 values and it is already configured.

::pdo::wpdo 2 2 0x1234 0xfedc

The 1st 2 is the number of the PDO. The 2nd 2 is the length of the PDO, i.e. the number of mapped

objects.

Take into account that PDOs only can be sent or received in the state OPERATIONAL.

24.3. Request of PDOs using RTR

If RTR is supported, configured TPDOs of the device can be requested by RTR. There-
fore it must be configured with::pdo::set_tpdo . The following example shows
how to request PDO 1.

EXAMPLE:

::pdo::rpdo 1

24.4. Reception of PDOs

To receive a PDO it must be configured (::pdo::set_tpdo) and an asynchronous
indication function must be present.

The following indication function simply writes the data to the console.

putPDO --
puts PDO data to the console
proc putPDO { num len dataList } {

puts "PDO: $dataList"
}

Any indication function must have the 3 parametersnum len dataList .

Each PDO needs an indication function. This can be configured with the command
::pdo::setPDOIndication .

EXAMPLE:

::pdo::setPDOIndication 1 putPDO

The first parameter is the number of the PDO and the second one is the name of the indication function.

If the indication function is not tailored for a specific PDO, more than one PDO can be
assigned to it.

24.5. Waiting for PDOs

The function::pdo::waitForPDO <num> <expr> can wait for PDOs. <num>
specifies the number of the PDO.It must be configured before it can be used.With the

Version: 3.2.7 CANopen Device Monitor Page 61 of 125

optional parameterexpr a numeric expression can be specified, that must be 1 to return.
Within the expression the variablesval(1) to val(8) can be used to access the
objects in the PDO.expr is evalutated by the tcl functionexpr . The following script
shows an example.

wait until the bit TargetReached is set
#
set script { ($val(1) & 0x40) > 1) }
waitForPDO 1 $script

Page 62 of 125 CANopen Device Monitor Version: 3.2.7

25. CAN Message Logging

Each CAN message on the CAN bus can be displayed in a separate message log window.
It can be activated by selectingView → Message Log

Figure 36: Message Log file menu

Menu entry Description
Mark Adds a marker
Save Saves the content in CAN-REport format
Show server status Shows status information of the CANopen server
Show time marks Inserts a time mark every minute
Find Opens a Find dialog
Close Closes the log window

The message is displayed in the CAN-REport message format:

<COB-ID (dec)>/<COB-ID (hex)> : <Type> : <Data (hex)>

EXAMPLE:

1000/0x3e8 : sD : 11 22 33 44 55 66 77 88

A data message with ID 3E8h was received.

It contains 8 data bytes 11h, 22h, 33h, 44h, 55h, 66h, 77h and 88h.

The message logs can be loaded with the CAN-REport and so they can be interpreted
with its sophisticated extensions.

Version: 3.2.7 CANopen Device Monitor Page 63 of 125

Figure 37: Message Log window

Not all CAN drivers of the CANopen Server m4d are able to send all received messages
to CDM and not all are able to display it’s own messages sent. In this case messages sent
are not displayed or displayed in red color. The message shown must not be displayed in
the correct time order. It is only the time when the message is scheduled to the driver.
The message itself is sent when there are no messages with a higher priority on the bus.

The Message Log has a remarkable influence on the performance of the CANopen
Device Monitor at high bus loads.To increase the performance close the Message Log
window.

! Message logging is not supported by every CANopen server.

25.1. Scripting-Interface

Some parts of the functionality of the Message Log can be used by scripts.

The provided functions are:

open_messagelog

Description:
Open the message log window.

Page 64 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
none

Results:
none

clear_messagelog

Description:
Clear the content of the message log.

Parameters:
none

Results:
none

save_messagelog <fileName>

Description:
Save the content of the message log into a file.

Parameters:
fileName pathto file

Results:
none

Version: 3.2.7 CANopen Device Monitor Page 65 of 125

26. SDO Program Download

The Device Monitor is capable of downloading files to CANopen devices. Thiscan be
any kind of file, e.g. new software versions, parameters, etc. The CANopen device has to
support the SDO Domain transfer.

Click with the right mouse button on a domain object to open the download menue.
Select upload or download to start the domain transfer.

Figure 38: Domaintransfer

Download from a script or from the console is performed by calling:

::cdm::domainDownload <node> <index> <sub> <timeout>
<file>

Description
executes a program download

Parameters:
node Node-ID
index index of the domain object where the file shall be down-

loaded
sub subindex of the domain object where the file shall be

downloaded
timeout timeout in milliseconds
file absolute path name of the file to be downloaded

Return:
nothing

Page 66 of 125 CANopen Device Monitor Version: 3.2.7

Paths to the files that contain spaces must be enclosed in quotes. Additionally the POSIX
style must be used to specify the path.

EXAMPLE:

%

% ::cdm::domainDownload 32 0x1f50 1 25000 \

"D:/Dokumente und Einstellungen/Administrator/Desktop/prog.bin"

%

A domain transfer from the device to the CANopen Device Monitor can be done by:
::cdm::domainUpload <node> <index> <sub> <timeout> <file>

Version: 3.2.7 CANopen Device Monitor Page 67 of 125

27. Network overview window

Figure 39: Network overview window

The network overview represents the nodes graphically organized in groups.Pictures in
GIF format are necessary for the visualization of the devices. Thesepicture files must
have the same name as the EDS file and must be in the same directory. Their maximum
size can be 72 x 72 pixel.

The node menu which provides reloading of the EDS file and access to the NMT com-
mands can be accessed via the right mouse button.

Page 68 of 125 CANopen Device Monitor Version: 3.2.7

28. Project Files

Project files are useful for projects with more than one device resp. EDS-File. The can be
saved and loaded via:File -> Project and contain the following data:

• all nodes with links to their EDS files

• links to the DCF files containing

device-specific values for the objects (ParameterValue)

• links to the OCF files containing

device-specific values for the objects

configuration settings for bit boxes, sliders and object-specific CallBack functions

• configuration of the "Process Image" tab

• configuration of the "PDO Process Image" tab

If a project is loaded all nodes and there EDS files are loaded.If DCF files are available
for the nodes these are loaded too and the values in the DCF file are stored into the inter-
nal buffer. OCF stored configurations and configurations made at the "Process Image"
tab are restored.

28.1. Import/Export of CCM project files

Project files of the CANopen Configuration Manager (CCM) can be loaded.Likewise the
CCM can import project files of the CANopen Device Monitor. Not all settings are
imported in both ways, but the Node<->EDS assignments and the connections defined in
the CCM are preserved.

Version: 3.2.7 CANopen Device Monitor Page 69 of 125

29. SRDO Tab

Figure 40: SRDO mask

The SRDO tab combines all settings of a SRDO.At the selection of a SRDO Object in
the object dictionary the SRDO tab is updated with the data from the EDS or with previ-
ous read data from the device. By pressing the "Read from Device" button the data are
read immediately from the device. Theupper part of the tab shows the actual SRDO data
from the SRDO object like the COB-IDs. The table below shows the mapping values
from the mapping object.

This tab can be activated via Extras → Plug-in -> Safety. It is only available, if the appen-
dant license has been purchased.

Page 70 of 125 CANopen Device Monitor Version: 3.2.7

Button Function
Receive from Device Read the data of the current SRDO object and of the

appendant mapping object
Check Data The values are checked for consistency and compliance

with the standard.
Check and Send to Device The values are checked for consistency and compliance

with the standard and transmitted to the device. Themap-
ping data are only transmitted if the mapping is not fixed.

Version: 3.2.7 CANopen Device Monitor Page 71 of 125

30. LSS Tab

30.1. LSS Mask

Figure 41: LSS Tab

The LSS tab simplifies the configuration of CANopen nodes using the "Layer Setting
Services".

This tab can be activated via Extras → Plug-in -> LSS. It is only available, if the corre-
sponding license has been purchased.

Button Description
Scan Network Scans the net for unconfigured devices.
Set Bit rate Changes the bit rate of all device within the network.
Activate Activates the changed bit rate of the device.
Store Saves the changed bit rate in non-volatile memory.
Set Node-ID Sets the node-ID of the device selected in the list below.
Set Bit rate Changes the bit rate of the device selected in the list below.
Activate Activates the changed bit rate of the device selected in the list

below.

Page 72 of 125 CANopen Device Monitor Version: 3.2.7

Button Description
Store Saves the changed bit rate in non-volatile memory.

Devices that are already configured can be added to the list byAdd configured device
which is available via the right mouse button.

30.2. LSS Commands

In scripts or in the console the following LSS commands are available:

Switch Selective

lss switch_sel <vendorId> <product> <revision> <serialNo>
Set single LSS slave in LSS CONFIGURATION state.

Switch global

lss switch_glob <0|1>
Set complete network in LSS CONFIGURATION (1) or LSS OPERATION (0) state.

Configuration of node id

lss set_node <nodeId>
Set the node id of an LSS slave in the state LSS CONFIGATION.

Request node

lss get_node
Get the node id of an LSS slave.

Identify LSS slaves

lss identity <vendorId> <product> <rev lo> <rev hi> \
<serial low> <serial hi>

Scans the network for nodes that are in the given address range.

Bitrate Configuration

lss set_bitrate <table_sel> <table_idx> \
[<gw_table_sel> <gw_table_idx>]

Set the new bitrate of an LSS slave. The LSS slave has to be in state LSS CONFIGURA-
TION.

The first two parameter define the bitrate of the LSS slave. The last two parameter define
the bitrate of the CANopen-Server. They are used when autobaud is to be set at the LSS
slaves.

Version: 3.2.7 CANopen Device Monitor Page 73 of 125

Bitrate Table index <table_idx>
1000 0
800 1
500 2
250 3
125 4

reserved 5
50 6
20 7
10 8

Autobaud 9

Only table 0 <table_sel> the standard CANopen table is supported by the CANopen
Device Monitor.

Bitrate activation

lss activate_bitrate <time>
Activates the bitrate. The CANopen Device Monitor responds after 2 * time is elapsed.
The time is given in milli seconds.

Store Configuration

lss store
On reception of this command the LSS slave sav es the bitrate and node id. The LSS
slave has to be in LSS CONFIGURATION state.

Page 74 of 125 CANopen Device Monitor Version: 3.2.7

31. DSP 402 extension

The DSP 402 extension consists of 3 components for the simplification of the work with
drives in conformity with the DSP402.

This extension can be activated via Extras → Plug-in -> DSP 402 Extension. They are only
available, if the corresponding license has been purchased.

31.1. State machine tab

Figure 42: DSP402 state machine

The state deposited green is the current state of the drive. Pale brown fields indicate pos-
sible next states and gray fields aren’t obtainable directly from the current state. The cur-
rent value of the status word is displayed under the state machine down on the right.

Version: 3.2.7 CANopen Device Monitor Page 75 of 125

The configuration dialog can be opened by the button "Configure". This dialog allows
the configuration of the acces mode to the device and the axle of the device. Theseset-
tings are also valid for the other DSP402 extensions.

31.2. Profile velocity mode tab

The profile velocity mode tab simplifies controlling CANopen drives in the profile veloc-
ity mode.

Figure 43: Profile velocity mode tab

31.3. Profile position mode tab

The Position Mode Tab simplifies the test and the commisioning of a device. Thespeed,
the acceleration and the delay as well as the target position can be configured comfort-
ably. Limiting values for these parameters are read from the objects of the device at the
initialization of the tab and can’t be exceeded. Afterpushing the start button the drive
executes the predefined movement. Thecommunication with the device is carried out via
SDOs.

Page 76 of 125 CANopen Device Monitor Version: 3.2.7

Figure 44: DSP402 Position Mode

31.4. Object extensions

Figure 45: Status word bit box

Version: 3.2.7 CANopen Device Monitor Page 77 of 125

Figure 43: Control word bit box

These extensions are special bit boxes for the status and the control word.

Page 78 of 125 CANopen Device Monitor Version: 3.2.7

32. About & Release Info Dialog

32.1. About Dialog

The about dialog provides information about:

• the current release

• the type of this release

• the licensee,

• the license and

• the available Tcl/Tk packages.

32.2. Latest Release Info Dialog

When requesting information about the latest release of the CANopen Device Monitor, a
http connection to our server is established and the data (approx. 30 bytes) are down-
loaded from the server.

NOTHING (except your IP address) IS SENT TO THE SERVER WHEN RETRIEVING
THE LATEST RELEASE INFO.

Version: 3.2.7 CANopen Device Monitor Page 79 of 125

33. CDM Command syntax

33.1. SDO commands

r < index> <subindex> <typ>

Description:
SDO read procedure

Parameters:
index object index
subindex object subindex
typ datatype of object <u8|u16|u32|i8|i16|i32|r32|vs>

Results:
read value

rr <index> <subindex> <typ>

Description:
SDO read procedure: type out the SDO read command and the answer
from the device

Parameters:
index object index
subindex object subindex
typ datatype of object

Results:
read value

rrc <index> <subindex> <typ> <ref>

Description:
SDO read and compare procedure: type out the SDO read command,
type out the answer from the device and compare the received value
with the reference value

In case of an error the global variable test_error is set to 1.

Page 80 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
index object index
subindex object subindex
typ datatype of object
ref reference value

Results:
0 received value is equal to the reference value
1 received value differs from the reference value

rre <index> <subindex> <typ>

Description:
SDO read and message error: type out the SDO read command,
type out the answer from the device and check the received value

Parameters:
index object index
subindex object subindex
typ datatype of object

Results:
0 received no SDO abort domain transfer
1 received SDO abort domain transfer

w <index> <subindex> <typ> <val>

Description:
SDO write procedure

Parameters:
index object index
subindex object subindex
typ datatype of object <u8|u16|u32|i8|i16|i32|r32|vs>
val value

Results:
OK value has been written to the object
ERROR* CiA 309-3 error code if SDO transfer failed

Version: 3.2.7 CANopen Device Monitor Page 81 of 125

ww <index> <subindex> <typ> <val>

Description:
SDO write procedure: type out the SDO write command and the
answer
from the device

Parameters:
index object index
subindex object subindex
typ datatype of object
val value to write

Results:
nothing

wwc <index> <subindex> <typ> <val> <expected>

Description:
SDO write and compare the expected result
the returned value is compared with the expected one.
typical a write can return "OK" or some errors beginning with "error"

one or two lines with the command and the result are printed to std-
out.
the last line contains a right justified flag for
OK - the returned value matches the expected
FAILURE - the returned value does not matche the expected

In case of an error the global variable test_error is set to 1.

Parameters:
index object index
subindex object subindex
typ datatype of object
val value
expected the expected return string

Results:
0 received value is equal to the expected value
1 received value differs from the expected value

Page 82 of 125 CANopen Device Monitor Version: 3.2.7

wwe <index> <subindex> <typ> <val>

Description:
SDO write and message error: type out the SDO write command,
type out the answer from the device and check the received value

Parameters:
index object index
subindex object subindex
typ datatype of object
val value

Results:
0 received no SDO abort code
1 received SDO abort code

Version: 3.2.7 CANopen Device Monitor Page 83 of 125

33.2. PDO commands

::pdo::set_rpdo <scope> <pdo_nr> <cob> <trans> <index1>
<sub1> <indexN> <subN>

Description:
Defines a RPDO at the device and a TPDO at the gateway
Example:
::pdo::set_rpdo local 1 0x220 event 0x6200 1
0x6200 2
This defines a PDO to set the first two 8-bit ports on a digital output
device according CiA 401.Index and sub-index are the destination
objects, which must be available in the EDS file of the current device.
See::pdo::wpdo as a usage example.

Parameters:
scope local|remote (local .. configure only CANopen-Gateway)
pdo_nr number of pdo
cob cob id for this pdo
trans transmission type (event|rtr|sync<1..240>)
index1 1st index to be mapped (format 0x%4X)
sub1 1st sub to be mapped ..
indexN nth index to be mapped
subN nth sub to be mapped ..

Results:
-

::pdo::set_tpdo <scope> <pdo_nr> <cob> <trans> <index1>
<sub1> <indexN> <subN>

Description:
Defines a TPDO at the device and a RPDO at the gateway
Example:
::pdo::set_tpdo local 1 0x220 event 0x6000 1
0x6000 2

Page 84 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
scope local|remote (local .. configure only CANopen-Gateway)
pdo_nr number of pdo
cob cob id for this pdo
trans transmission type (event|rtr|sync<1..240>)
index1 1st index to be mapped (format 0x%4X)
sub1 1st sub to be mapped .. decimal
indexN nth index to be mapped
subN nth sub to be mapped ..

Results:
-

::pdo::wpdo <num> <length> <args>

Description:
Transmits a predefined PDO
It must be configure with set_rpdo before!
Example:
::pdo::wpdo 1 2 0xff 0xaf

Parameters:
num tpdo number
length number of data items
args value1 value2 ... valueN

Results:
-

::pdo::wwpdo <num> <length> <args>

Description:
PDO write procedure: type out the PDO write command

Parameters:
num PDO number
length number of data items
args value1 value2 ... valueN

Version: 3.2.7 CANopen Device Monitor Page 85 of 125

Results:
nothing

::pdo::rpdo <num>

Description:
Requests a predefined PDO by rtr
It must be configure with set_tpdo before!
Example:
::pdo::rpdo 63

Parameters:
num number of PDO

Results:
-

::pdo::setEcatTpdo <num> <node> <nodePdoNum> <mapCnt>
<dataTypes>

Description:
Configure EcatServer to forward TPDO of the device to the EDM
Example:
::pdo::setEcatRpdo 1 27 2 4 u8 u16 u16 u8

Parameters:
num number of pdo in EcatServer
node Slave node-Id
nodePdoNum pdo number at node
mapCnt number of mapped objects
dataTypes list of dataTypes which are mapped ..

Results:
Returns OKor error message

::pdo::setEcatTpdo <num> <node> <nodePdoNum> <mapCnt>
<dataTypes>

Page 86 of 125 CANopen Device Monitor Version: 3.2.7

Description:
Configure EcatServer to send data to a RPDO at the device
Example:
::pdo::setEcatRpdo 1 27 2 4 u8 u16 u16 u8

Parameters:
num number of pdo in EcatServer
node Slave node-Id
nodePdoNum pdo number at node
mapCnt number of mapped objects
dataTypes list of dataTypes which are mapped ..

Results:
Returns OKor error message

::pdo::resetEcatTpdo

Description:
This proc resets all configured TPDOs at the EcatServer

Parameters:
-

Results:
-

::pdo::resetEcatRpdo

Description:
This proc resets all configured RPDOs at the EcatServer

Parameters:
-

Results:
-

::pdo::setPDOCycle <time_us>

Version: 3.2.7 CANopen Device Monitor Page 87 of 125

Description:
The EcatServer as EtherCAT Master exchanges the PDO data with all
connected slaves at a giv en interval which is called here ’PDO cycle’.
This PDO cycle can be configured with that function

Parameters:
time_us time for PDO cycle in microseconds

Results:
nothing

pdo::setPDOTransmission <pdoNr> <time_ms>

Description:
Process data from the slaves are transfered to the EDM not at every
PDO cycle but with a configurable interval to reduce the load the
EDM. This interval can be configured in milliseconds or a value of 0
indicates an event-driven transmission.

Parameters:
pdoNr number of PDO in EcatServer configuration
time_ms time for PDO update in milliseconds

Results:
nothing

::pdo::setHandler <num> <cmd>

Description:
Registers a PDO indication function for PDO

The PDO indication function <cmd> is called when PDO number
<num> arrives. Thefunction <cmd> is called with three arguments:
numPDO number
dl number of data
data list of data

Parameters:
num number of PDO
cmd name of PDO indication function

Page 88 of 125 CANopen Device Monitor Version: 3.2.7

Results:
-

::pdo::setPDOIndication <num> <cmd>

Description:
Registers a PDO indication function for PDO

::pdo::setPDOIndication is a compatibility alias to ::pdo::setHandler
The PDO indication function <cmd> is called when PDO number
<num> arrives. Thefunction <cmd> is called with three arguments:
numPDO number
dl number of data
data list of data

Parameters:
num number of PDO
cmd name of PDO indication function

Results:
-

::pdo::waitForPDO <pdoNr> <script>

Description:
Waits for a PDO and evals a script
when the PDO arrives

Parameters:
pdoNr number of PDO
script (opt.) optional script that must return 1, if it exists. Within

the script the variables val(1),val(2) .. val(n) can be used.
They contain the values of mapped objects in the PDO.
val(1) refers to the 1st object. val(2) to the 2nd, and so on.

Results:
-

Version: 3.2.7 CANopen Device Monitor Page 89 of 125

33.3. NMT commands

::nmt::start <node>

Description:
Sends the NMT command ’start’ to one or all nodes

Parameters:
node node-ID (0 addresses the whole network)

Results:
-

::nmt::stop <node>

Description:
Sends the NMT command ’stop’ to one or all nodes

Parameters:
node node-ID (0 addresses the whole network)

Results:
-

::nmt::preop <node>

Description:
Sends the NMT command ’enter pre-operational’ to one or all nodes

Parameters:
node node-ID (0 addresses the whole network)

Results:
-

::nmt::resetComm <node>

Page 90 of 125 CANopen Device Monitor Version: 3.2.7

Description:
Sends the NMT command ’reset communication’ to one or all nodes

Parameters:
node node-ID (0 addresses the whole network)

Results:
-

::nmt::resetAppl <node>

Description:
Sends the NMT command ’reset node’ to one or all nodes

Parameters:
node node-ID (0 addresses the whole network)

Results:
-

::nmt::resetServer

Description:
It reset the ECAT server and rebuilds PDO data.

Parameters:
-

Results:
-

Version: 3.2.7 CANopen Device Monitor Page 91 of 125

33.4. LSS commands

::lss::baud2Index <baudrate>

Description:
Converts the baudrate as number (e.g. 125 or 1000) into
the LSS table index

Parameters:
baudrate baudrate as number

Results:
returns baudrate index

::lss::setHandler <cmd>

Description:
set callback function to be called when ever a LSS message
UNCONFIGURED DEVICE is received.

Parameters:
cmd the name of the Tcl procedure

Results:
-

Page 92 of 125 CANopen Device Monitor Version: 3.2.7

33.5. Other CANopen commands

::cdm::setSDOTimeOut <node> <time>

Description:
Sets the SDO time-out time for a specific node

Parameters:
node node-ID of the node
time time out time in ms

Results:
-

::cdm::enableGuarding <node> <gtime> <ltime>

Description:
Starts the guarding of a node

Parameters:
node node-ID of the node that should be guarded
gtime guarding time
ltime life time factor

Results:
-

::cdm::disableGuarding <node>

Description:
Stops the guarding of a node

Parameters:
node node-ID of the node that had been guarded

Results:
-

::cdm::setHeartbeat <time>

Version: 3.2.7 CANopen Device Monitor Page 93 of 125

Description:
Configures the heartbeat producer interval of the CANopen-Gateway

Parameters:
time interval in ms

Results:
-

::cdm::enableHeartbeat <node> <time>

Description:
Configures the heartbeat consumer time for a given node

Parameters:
node node-Id of monitored node
time interval in ms

Results:
-

::cdm::enableSync <sync>

Description:
if no argument is provided, it asks the user for a sync intervall and
enables sync

Parameters:
sync sync intervall in ms (opt.)

Results:
-

::cdm::readU64 <index> <subindex>

Description:
Read a u64 variable as octet string
and return a string like 0x1234567812345678

Page 94 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
index index
subindex subindex

Results:
Returns au64 value

::cdm::writeU64 <index> <subindex> <value>

Description:
Write a u64 variable as octet string

Parameters:
index index
subindex subindex
value u64 value

Results:
-

::cdm::status <fileName>

Description:
Print out a lot of internal status informations
It might be useful for support purpose

Parameters:
fileName file name for output (opt.)

Results:
-

::cdm::disableSync

Description:
Disables the transmission of SYNC messages

Version: 3.2.7 CANopen Device Monitor Page 95 of 125

Parameters:
-

Results:
-

::emcy::setHandler <cmd>

Description:
Registers a indication function for emergencies

The indication function is called when an Emergency message
arrives.
It has these arguments:
node - node id
args - emergency

Parameters:
cmd name of indication function

Results:
-

::sdo::setHandler <cmd>

Description:
Registers a indication function for sdo write indications

The indication function is called when a device writes
to the object dictionary of the CANopen server.
It has these arguments:
index - index
sub - subIndex
len - length of data (or b64 data)
data - data
For nun-numerical data base64-encoding is used.

Page 96 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
cmd name of indication function

Results:
-

::dcf::downloadDCF <edsFile> <dcfFile> <nodeId>

Description:
This proc loads a DCF file and downloads its data
to a given node

Parameters:
edsFile path to EDS File
dcfFile path to DCF File
nodeId node id of device

Results:
-

::cdm::pause <msecs>

Description:
Waits for a number of milliseconds with event handling

Parameters:
msecs ms to wait

Results:
-

Version: 3.2.7 CANopen Device Monitor Page 97 of 125

::hbt::setHandler <cmd>

Description:
Registers a indication function for heartbeat events

The indication function is called when a heartbeat
event like BOOT-UP, HBT started or HBT lost arrives.
It has these arguments:
node - node id
data - data from 309-3 server

Parameters:
cmd name of indication function

Results:
-

::hbt::unsetHandler

Description:
Unregisters the indication function for heartbeat events

Parameters:
-

Results:
-

Page 98 of 125 CANopen Device Monitor Version: 3.2.7

33.6. Test commands

::cdm::addTab <titel> <pos>

Description:
adds a tab into the Tabset of the right side

Parameters:
titel name of the Tab displayed at the ...
pos position starting with 0, can be end

Results:
frame thewindow name of the top level f rame within this tab

::cdm::deleteTab <pos>

Description:
deletes a tab from the tabset

Parameters:
pos position starting with 0, can be end

Results:

::cdm::addTestTabOld <filename> <title>

Description:
adds a special tab on the right side of the device monitor;
the tab-card contains checkbuttons for test-scripts,
the list with scripts is in a file and will set by user

Parameters:
filename name of the file which contains a list of scripts for the spe-

cial tab
title title of the tab

Results:
window path to Tab

Version: 3.2.7 CANopen Device Monitor Page 99 of 125

::cdm::stringCenter <string> <l>

Description:
center string -- prepend spaces to a given string
if the result will be printed it looks like it is centered within
a line lenght of l

Parameters:
string unformated string
l desired line length

Results:
centered string

::cdm::stringFill <string> <endword> <l>

Description:
append spaces and endword at string until line length l

Parameters:
string unformated string
endword optional END-word, defaults to {}
l desired line length, defaults to 80

Results:
formatted string

::cdm::banner

Description:
prints a headline with device and user characteristic

Parameters:
nothing

Results:
nothing

Page 100 of 125 CANopen Device Monitor Version: 3.2.7

::cdm::putsDateTime

Description:
prints the current date and time

Parameters:
nothing

Results:
nothing

::cdm::commentInput <wtitle> <cancelstring>

Description:
user input for comments

Parameters:
wtitle window title
cancelstring cancel string

Results:
nothing

::cdm::userDialog <title> <type>

Description:
user response dialog
if a dialaog is finished with "Not Ok" another dialogbox
for giving a reason is opened

Parameters:
title additional text for displaying to the user
type specifies the type of dialogue
- 0 ... only wait for OK
- 1 ... decide between OK and NotOk
- 2 ... decide between OK NotOk and Abort
- 3 ... decide between OK and NotOk without comment
- 4decide between list of given choices.

Version: 3.2.7 CANopen Device Monitor Page 101 of 125

Results:
0 decided for OK
1 decided for Not OK
2 decided for Abort
or selectedbutton(text) for type 4

Page 102 of 125 CANopen Device Monitor Version: 3.2.7

33.7. CDM commands

::cdm::getObjectType <node> <index>

Description:
Returns the objectType

Parameters:
node node-ID ({} means current node ID) as %d or 0x%x
index index as %X, or 0x%x

Results:
Returns objectType (VARIABLE,ARRAY,RECORD,DOMAIN)
throws anerror, if the index does not exist

::cdm::getDataType <node> <index> <sub>

Description:
Returns the data type of a sub index

Parameters:
node node-ID ({} means current node ID) as %d or 0x%x
index index as %X, or 0x%x
sub subindex (opt) as %03d, %0x or 0x%x

Results:
Returns DataType (u8|u16|u32|i8|i16|u32|r32|vs)
throws anerror, if the index does not exist

::cdm::getName <node> <index> <sub>

Description:
Returns the parameter name of an object from the EDS

Parameters:
node node-ID
index index
sub sub index (opt) as %03d, %0x or 0x%x

Version: 3.2.7 CANopen Device Monitor Page 103 of 125

Results:
returns theparameter name or throws an error if the object does not exist

::cdm::getDefaultValue <node> <index> <sub>

Description:
Returns the default value of an object from the EDS

Parameters:
node node-ID
index index
sub sub index (opt) as %03d, %0x or 0x%x

Results:
returns thedefault value, throws an error if the object does not exist

::cdm::existObject <node> <index> <sub>

Description:
Checks, if an object exists in the EDS file

Parameters:
node node-ID ({} means current node ID) as %d or 0x%x
index index as %X, or 0x%x
sub subindex (opt) as %d, 0x%x

Results:
1 object exists
0 object does not exist

::cdm::getRemoteID

Description:
Returns the current remote ID

Parameters:
-

Page 104 of 125 CANopen Device Monitor Version: 3.2.7

Results:
Returns theremote-id

::cdm::setRemoteID <id>

Description:
Sets the remote id and updates the OD tree

Parameters:
id remote node id

Results:
1 success
0 inv alid ID

::cdm::loadEds <fileName>

Description:
Loads an EDS file for a node and after that
it looks for a description file with a matching name
and loads it.
If there is a matching device-specific .rc-file
it is sourced to. This file must contain valid Tcl or CDM commands

Parameters:
fileName path to EDS file (POSIX style)

Results:
-

setMessageLogLimit <limit>

Description:
Set a new limit of lines for the message log

Parameters:
limit max number of lines in message log

Version: 3.2.7 CANopen Device Monitor Page 105 of 125

Results:
Returns OKif limit is ok, otherwise a verbose error

::cdm::hideGUI <flag>

Description:
Hides the CDM GUI.
This function is useful for scripts that build their own
user interface.

Parameters:
flag (opt.) use -noconsole to exclude the console window

Results:
-

::cdm::showGUI <flag>

Description:
Shows the CDM GUI. Counterpart of ::cdm::hideGUI
This function is useful for scripts that build their own
user interface.

Parameters:
flag (opt.) use -noconsole to exclude the console window

Results:
-

Page 106 of 125 CANopen Device Monitor Version: 3.2.7

isColor <color>

Description:
Checks if a color is a valid tcl color

Parameters:
color color name or #hex expression

Results:
1 is valid color
0 is no valid color

int2asc <i>

Description:
Converts an unsinged char value into a ASCII representation

Parameters:
i unsigned char value

Results:
Returns anascii value

int2bits <i> <digits>

Description:
Converts an integer value into a binary representation like
0b01010101

Parameters:
i integer value
digits length of the returned value (opt.)

Results:
Returns abinary value

::common::every <script> <ms>

Version: 3.2.7 CANopen Device Monitor Page 107 of 125

Description:
This proc runs a script cyclically.
The global variable every(script) stores the after-id
for each script.

Parameters:
script script to run
ms interval in ms (opt.) defaults to 1000

Results:
-

clear_messagelog

Description:
This proc deletes the content of the message log

Parameters:
-

Results:
-

save_messagelog <filePath>

Description:
This proc saves the content of the message log
into a file

Parameters:
filePath path to writable file

Results:
-

clear

Page 108 of 125 CANopen Device Monitor Version: 3.2.7

Description:
This proc deletes the content of the CDM console

Parameters:
-

Results:
-

tkcon save <filePath> <spec>

Description:
This command saves the content of the CDM console
to a file

Parameters:
filePath path to writeable file
spec content specifier (use all for all content)

Results:
-

Version: 3.2.7 CANopen Device Monitor Page 109 of 125

33.8. DSP402 commands (DSP402-Extension)

::402::ret

Description:
List of possible return values

Parameters:
-

Results:
0 OK
1 Drive in wrong state
2 Transition not possible
3 SDO abort occured
4 No setpoint acknowledge

::p402::ppHandleNewSetpoint <delayTime>

Description:
This function handles a new setpoint in the Profile Position mode.
The function initiates an absolute movement
in the single-setpoint mode.
If this function returns with an error
it is possible that the mode-specific bits in
object 0x6041 (controlword) and object 0x6041
(statusword) are not cleared.
Each drive needs a specific time for the transfer
of a new setpoint. This time can be specified by
the argument delayTime.
The communication is done via SDO.
This function can only be used for single drive devices.
This function is used by other functions of this
namespace.

Parameters:
delayTime time for transfer in ms

Results:
ret seevariable ::p402::ret

Page 110 of 125 CANopen Device Monitor Version: 3.2.7

::p402::getState

Description:
This function gets the actual CiA-402 state of the drive.
The actual CiA-402 state is returned
in the format of object 0x6041 (statusword).
The communication is done via SDO.
This function can only be used for single drive devices.

This function returns a list with the following elements: retsee vari-
able ::p402::ret stateactual CiA-402 state in statusword format The
state is only valid if this function returns with ok.

Example for usage:
set retList [::p402::getState]
set retVal [lindex \$retList 0]
if { [set retVal] != [set ::p402::ret(OK)] } {

puts "Error: getState() returns with [set retVal]."
}
set actualState [lindex \$retList 1]

If actualState is 0x0027 the drive is in the state OPERATION
ENABLED.

Parameters:
-

Results:
retList value of ::p402::ret + actual CiA-402 state

::p402::changeState <state> <delayTime>

Description:
This function changes into the desired CiA-402 state.
The desired CiA-402 state must be input
in the format of object 0x6041 (statusword).
Each drive needs a specific time to change the CiA-402 state.
This time is set by the argument delayTime.
The communication is done via SDO.
This function can only be used for single drive devices.

Example: The argument state must be 0x0027 for
a change into the CiA-402 state OPERATION ENABLED.

Version: 3.2.7 CANopen Device Monitor Page 111 of 125

Parameters:
state desired CiA-402 state
delayTime maximal time for state changing in ms

Results:
ret seevariable ::p402::ret

::p402::halt

Description:
This function activates the halt function,
i.e. the motion is halted.
The Halt bit in object 0x6040 (controlword) is set.
To reset Halt use the function ::p402::<mode>Change,
because the necessary functionality to reset Halt is
mode-specific.
The communication is done via SDO.
This function can only be used for single drive devices.

Example for reset Halt:
use ::p402::ppChange for the pp mode

Parameters:
-

Results:
ret seevariable ::p402::ret

::p402::modeStop <delayTime>

Description:
This function stops a motion by the CiA-402 state transition
from the CiA-402 state OPERATION ENABLED into the CiA-402
state SWITCHED ON. The drive is stopped.
The communication is done via SDO.
This function can only be used for single drive devices.

Note: The operation mode is not changed to NO_MODE,
because not all drives support NO_MODE.

Page 112 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
delayTime maximal time for state changing in ms

Results:
ret seevariable ::p402::ret

::p402::pvStart <targetVelocity> <profileAcceleration>
<delayTime>

Description:
This function starts a motion in the Profile Velocity mode.
The Profile Velocity mode is configured by the
mandatory objects of the pv-mode.
The operation mode is set to Profile Velocity.
The motion is started by the change into the CiA-402 state
OPERATION ENABLED.
The communication is done via SDO.
This function can only be used for single drive devices.

Parameters:
targetVelocity value of object 0x60FF
profileAcceleration value of object 0x6083
delayTime maximal time for state changing in ms

Results:
ret seevariable ::p402::ret

::p402::pvChange <targetVelocity>

Description:
This function changes the velocity of the movement in the
Profile Velocity mode.
The communication is done via SDO.
This function can only be used for single drive devices.

Parameters:
targetVelocity value of object 0x60FF

Results:
ret seevariable ::p402::ret

Version: 3.2.7 CANopen Device Monitor Page 113 of 125

::p402::ppStart <targetPos> <profileVel> <profileAcc>
<delayTime>

Description:
This function starts a motion in the Profile Position mode.
The Profile Position mode is configured by the
mandatory objects of the pp-mode.
The operation mode is set to Profile Position.
This function initiates an absolute movement in the
single-setpoint mode.
The motion is started by the change into the CiA-402 state
OPERATION ENABLED and the execution of the new-setpoint
handling.
Each drive needs a specific time for the transfer
of a new setpoint. This time can be specified by
the argument delayTime.
The communication is done via SDO.
This function can only be used for single drive devices.

Parameters:
targetPos value of object 0x607A
profileVel value of object 0x6081
profileAcc value of object 0x6083
delayTime transfer time in ms

Results:
ret seevariable ::p402::ret

::p402::ppChange <targetPosition> <delayTime>

Description:
This function changes the target position in the Profile
Position mode.
This function initiates an absolute movement in the
single-setpoint mode.
The movement is started by the execution of the new-setpoint
handling.
Each drive needs a specific time for the transfer
of a new setpoint. This time can be specified by
the argument delayTime.
The communication is done via SDO.
This function can only be used for single drive devices.

Page 114 of 125 CANopen Device Monitor Version: 3.2.7

Parameters:
targetPosition value of object 0x607A
delayTime transfer time in ms

Results:
ret seevariable ::p402::ret

Version: 3.2.7 CANopen Device Monitor Page 115 of 125

34. Appendices

Appendix 1 — CANopen Commands in Overview

Node Guarding

• ::cdm::enableGuarding <node> <gtime> <ltime>

• ::cdm::disableGuarding <node>

PDO

• ::pdo::set_rpdo <scope> <pdo_nr> <cob_id> <trans> <map_index1> <map_sub1>
...

<map_indexn> <map_subn>

• ::pdo::set_tpdo <scope> <pdo_nr> <cob_id> <trans> <map_index1> <map_sub1>
...

<map_indexn> <map_subn>

• ::pdo::wpdo <pdo_num> <length> <args>

• ::pdo::rpdo <pdo_num>

• ::pdo::waitForPdo <pdo_num> <script>

• ::pdo::setHandler <pdo_num> <proc>

• ::pdo::setPDOIndication <pdo_num> <proc> (compatibility alias to setHandler)

Reset Application

• ::nmt::resetAppl <node>

Reset Communication

• ::nmt::resetComm <node>

SDO

• r <index> <subindex> <type>

• rr <index> <subindex> <type>

• rrc <index> <subindex> <type> <ref_val>

• rre <index> <subindex> <type>

• w <index> <subindex> <type> <val>

• ww <index> <subindex> <type> <val>

• wwc <index> <subindex> <type> <val> <ref_val>

• wwe <index> <subindex> <type> <val>

SYNC

• ::cdm::enableSync <cycle>

• ::cdm::disableSync

Communication state change

• ::nmt::preop <node_id>

Page 116 of 125 CANopen Device Monitor Version: 3.2.7

• ::nmt::start <node_id>

• ::nmt::stop <node_id>

Node Monitoring

• ::hbt::setHandler <callback>

• ::hbt::unsetHandler

Version: 3.2.7 CANopen Device Monitor Page 117 of 125

Appendix 2 — CDM Commands in Overview

Date/Time

• ::cdm::putsDateTime

Dialog

• ::cdm::userDialog <title> <type>

Download

• ::cdm::domainDownload <node> <index> <sub> <timeout in ms> <file>

• ::cdm::domainUpload <node><index> <sub> <timeout in ms> <file>

Network

• ::cdm::profileScan <dprf> <timeout>

• ::cdm::getRemoteID

• ::cdm::setRemoteID <node>

EDS

• ::cdm::loadEDS <fileName>

Object dictionary access

• ::cdm::getDataType {<node>} <index> {<sub>}

• ::cdm::getObjectType {<node>} <index>

• ::cdm::getDefaultValue {<node>} <index> {<sub>}

Test Protocol Header

• ::cdm::banner

Tabbed Fields

• ::cdm::addTab {<tab_text> {<pos>}}

• ::cdm::addTestTab t_<conf> {<tab_text>}

• ::cdm::deleteTab {<pos>}

Formatting of Strings

• ::cdm::stringCenter <string> <line length>

• ::cdm::stringFill <string> <endword> <line length>

Page 118 of 125 CANopen Device Monitor Version: 3.2.7

Appendix 3 — Creation of an Object Description

An object description ("<working directory>\<device>.txt") has an entry for every object.
This entry consists of:

1.) theindex (4-digit, hexadecimal) followed by ’:’

2.) theEDS name

3.) anempty line and

4.) thedescription

The description is not limited in the length. The text of the description does not allow to
contain an index (see 1.) at line start.

1A00:
Transmit PDO Mapping Parameter

It contains the mapping parameter for the PDOs the
device is able to transmit.
Sub-index 0 contains the number of the mapped
data objects. All further entries define the data by
it’s index, sub-index and length.
The structure of a mapping entry is:

index,subindex,length

1A14:
Transmit PDO Mapping Parameter

......

Version: 3.2.7 CANopen Device Monitor Page 119 of 125

Literature

[1] Tcl and the Tk Toolkit
Ousterhout, John K.
Addison-Wesley, 1994
ISBN 0-201-63337-X

[2] PracticalProgramming in Tcl and Tk, 2d ed.
Welch, Brent
Prentice Hall, 1997

[3] Tcl/Tk Tools
Harrison, Mark
O’Reilly & Associates, 1997

[4] Effective Tcl/Tk Programming
Harrison, Mark; McLennan, Michael
Addison-Wesley, 1998

Literatur e in the Internet

[5] http://www.tcl.tk

[6] http://wiki.tcl.tk

[7] http://www.activestate.com/solutions/tcl/

[8] http://incrtcl.sourceforge.net/blt/index.html
The BLT Toolkit.
BLT is an extension to the Tk toolkit, adding new widgets, geometry managers, and
miscellaneous commands.

[9] Tcl and the Tk Toolkit
Ousterhout, John K.; Jones, Ken
Addison-Wesley, 2010, second edition
ISBN 978-0-321-33633-0

CANopen Device Monitor Wiki

[11] http://www.can-wiki.info/CanOpenDeviceMonitor
The CANopen Device Monitor Wiki is a constantly growing collection of sample
scripts and tips.

Page 120 of 125 CANopen Device Monitor Version: 3.2.7

35. Glossary

CAN Controller Area Network
CAN FD Controller Area Network - Flexible Data Rate
CAL CAN Application Layer (CANopen base)
CDM CANopen Device Monitor
CiA CAN in Automation international users and manufacturers group e.V.
CN Controlled Node (Ethernet POWERLINK)
COB Communication Object (CAN Message)
COB-ID Communication Object Identifier
CSDO Client SDO
EDM EtherCAT Device Monitor
EDS Electronic Data Sheet
ESI EtherCAT Slave Information file
EMCY Emergency Object
EPSG Ethernet POWERLINK Standardization Group
ETG EtherCAT Technology Group
MN Managing Node (Ethernet POWERLINK)
NMT Network Management
OD Object Dictionary
PDO Process Data Object, unconfirmed service for real time communication
RPDO Receive PDO
RTR Remote Transmission Request
PDM POWERLINK Device Monitor
PRMS Problem Report Management System
SDO Service Data Object,

Confirmed data transfer service for parameter data.
SSDO Server SDO
SYNC Sychronization Object
Tcl Tool Command Language (script language)
TCP/IP Transmission Control Protocol/Internet Protocol
TIME Time Stamp Object
Tk Tcl Tool kit (graphical Tcl extension), Tcl/Tk
TPDO Transmit PDO
Widget element of a graphical user interface (e.g. button, entry filed, menu, ...)

Version: 3.2.7 CANopen Device Monitor Page 121 of 125

36. Index
- a -

Action
tab- 43
tab-set 20

activate_bitrate, LSS 74
after 97

- b -

base64 47
bitwise representation 45

- c -

CAN bit rate 15
cdm::addTab 52
cdm::addTestTab 49
cdm::deleteTab 53
cdm::domainDownload 66
cdm.rc 15
commands, Tcl 58

- d -

DCF-file 54
description, object 118
device change 15
device.rc 16
device settings 16
doc-file 118

- e -

editor 15
EDS file 15

- f -

file, project 69

- g -

get_node, LSS 73
global_stop, variable 51

- i -

identity, LSS 73
index 20

- l -

LoadConfig 57
logging 63
LSS

activate_bitrate 74
get_node 73
identity 73
set_bitrate 73
set_node 73
store 74
switch_glob 73
switch_sel 73

- m -

menu online 56
Message Log 63

- n -

network 68
NMT tab 31
NOTEPAD 15

- o -

object
configuration file 57
description 33,118

OCF-file 57
octet 46
offline 56
online 56
Options 28

- p -

pause 97
PDO 36,60
preop 31
Preop All 31
Preop Node 31
procedure, Tcl 59
profile position mode 77
program download 66

SDO 66
project file 69

- r -

Repository 15

- s -

SaveConfig 57
Scan Network 31
scripting, Tcl 64
script load 59
SDO program download 66
Send Sync 31
set_bitrate, LSS 73
set_node, LSS 73
slider 43–44
start 31
Start All 31
Start Node 31
stop 31
store, LSS 74
strip chart 41
subindex 20
switch_glob, LSS 73
switch_sel, LSS 73
system requirements 8

- t -

t_start.tcl 48
tab-, Action 43
tab, NMT 31
tab-set, Action 20

Page 122 of 125 CANopen Device Monitor Version: 3.2.7

tabs, user-specific 48
Tcl

commands 58
procedure 59
scripting 64

tree 20

- u -

update 51
user-specific tabs 48

- v -

variable global_stop 51

- w -

wait 97

Version: 3.2.7 CANopen Device Monitor Page 123 of 125

Page 124 of 125 CANopen Device Monitor Version: 3.2.7

Table of Contents

1. Introduction . 7

1.1. ProductOverview . 7

1.2. Conventions . 8

2. Installation .10

3. QuickStart .11

3.1. Preparations. .11

3.2. Firstprogram start. 11

3.3. Communicationwith a CANopen device. 13

4. Configuration .15

4.1. Settingof the CAN Bitrate. 15

4.2. Loadingof the Object Dictionary. 15

4.3. Device Specific Settings. 16

4.4. Start-UpScripts .16

5. CAN-Interface Configuration. 18

5.1. ConfigurationDialog . 18

6. ObjectDictionary Accesses . 20

7. MenuStructure .23

7.1. File .23

7.2. Edit .23

7.3. View .24

7.4. Connection .24

7.5. Extras. .25

7.6. Windows .26

7.7. Help .26

8. Toolbar .27

9. Options .28

Version: 3.2.7 CANopen Device Monitor Page 3 of 125

	35. Glossary
	1. Introduction
	1.1. Product Overview
	1.2. Conventions

	2. Installation
	3. Quick Start
	3.1. Preparations
	3.2. First program start
	3.3. Communication with a CANopen device

	4. Configuration
	4.1. Setting of the CAN Bitrate
	4.2. Loading of the Object Dictionary
	4.3. Device Specific Settings
	4.4. Start-Up Scripts

	5. CAN-Interface Configuration
	5.1. Configuration Dialog

	6. Object Dictionary Accesses
	7. Menu Structure
	7.1. File
	7.2. Edit
	7.3. View
	7.4. Connection
	7.5. Extras
	7.6. Windows
	7.7. Help

	8. Toolbar
	9. Options
	9.1. General Settings
	9.2. DCF Settings
	9.3. Network Settings
	9.4. Color Settings
	9.5. Font Settings

	10. NMT Tab
	10.1. NMT commands
	10.2. User defined scripts
	10.3. Network overview
	10.4. Device Information

	11. Description Tab
	11.1. Object Description
	11.2. Object Description File

	12. Overview Tab
	12.1. Index Overview

	13. PDO Configuration Tab
	13.1. Configuration of PDOs for the chart

	14. Process Tab
	15. PDO Process Tab
	16. Using Stripcharts
	17. Extended object configuration
	17.1. Slider
	17.2. Slider in a Top Level Window
	17.3. Switch Box Display of Objects

	18. Usage of Octet strings
	18.1. Value entry frame
	18.2. Octet strings in scripts

	19. User Specified Tabs
	19.1. User specified tabs with support of test
	19.2. User specified tabs without contents
	19.3. Erasing User Specified Tab-sets

	20. Data Management with DCF File
	20.1. Creating a DCF file
	20.2. Load
	20.3. Send

	21. Offline Mode
	22. Object Data Management with OCF File
	22.1. Saving of OCF files
	22.2. Loading
	22.3. File Format

	23. Console
	23.1. Tcl Commands
	23.2. Scripts

	24. Scripting with PDOs
	24.1. Configuration of PDOs in scripts
	24.2. Transmission of PDOs
	24.3. Request of PDOs using RTR
	24.4. Reception of PDOs
	24.5. Waiting for PDOs

	25. CAN Message Logging
	25.1. Scripting-Interface

	26. SDO Program Download
	27. Network overview window
	28. Project Files
	28.1. Import/Export of CCM project files

	29. SRDO Tab
	30. LSS Tab
	30.1. LSS Mask
	30.2. LSS Commands

	31. DSP 402 extension
	31.1. State machine tab
	31.2. Profile velocity mode tab
	31.3. Profile position mode tab
	31.4. Object extensions

	32. About & Release Info Dialog
	32.1. About Dialog
	32.2. Latest Release Info Dialog

	33. CDM Command syntax
	33.1. SDO commands
	33.2. PDO commands
	33.3. NMT commands
	33.4. LSS commands
	33.5. Other CANopen commands
	33.6. Test commands
	33.7. CDM commands
	33.8. DSP402 commands (DSP402-Extension)

	34. Appendices
	34. Appendix 1 CANopen Commands in Overview
	34. Appendix 2 CDM Commands in Overview
	34. Appendix 3 Creation of an Object Description
	34. Literature

